Spatial trend estimation under potential heterogeneity is an important problem to extract spatial characteristics and hazards such as criminal activity. By focusing on quantiles, which provide substantial information on distributions compared with commonly used summary statistics such as means, it is often useful to estimate not only the average trend but also the high (low) risk trend additionally. In this paper, we propose a Bayesian quantile trend filtering method to estimate the non-stationary trend of quantiles on graphs and apply it to crime data in Tokyo between 2013 and 2017. By modeling multiple observation cases, we can estimate the potential heterogeneity of spatial crime trends over multiple years in the application. To induce locally adaptive Bayesian inference on trends, we introduce general shrinkage priors for graph differences. Introducing so-called shadow priors with multivariate distribution for local scale parameters and mixture representation of the asymmetric Laplace distribution, we provide a simple Gibbs sampling algorithm to generate posterior samples. The numerical performance of the proposed method is demonstrated through simulation studies.
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous Poisson process conditioned on the realization of a random intensity function. They are flexible tools for capturing spatial heterogeneity and dependence. However, implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions. We propose a penalized regression method for estimating covariate effects in doubly-stochastic point processes that is computationally efficient and does not require a parametric form or stationarity of the underlying intensity. We establish the consistency and asymptotic normality of the proposed estimator, and develop a covariance estimator that leads to a conservative statistical inference procedure. A simulation study shows the validity of our approach under less restrictive assumptions on the data generating mechanism, and an application to Seattle crime data demonstrates better prediction accuracy compared with existing alternatives.
Conducting valid statistical analyses is challenging in the presence of missing-not-at-random (MNAR) data, where the missingness mechanism is dependent on the missing values themselves even conditioned on the observed data. Here, we consider a MNAR model that generalizes several prior popular MNAR models in two ways: first, it is less restrictive in terms of statistical independence assumptions imposed on the underlying joint data distribution, and second, it allows for all variables in the observed sample to have missing values. This MNAR model corresponds to a so-called criss-cross structure considered in the literature on graphical models of missing data that prevents nonparametric identification of the entire missing data model. Nonetheless, part of the complete-data distribution remains nonparametrically identifiable. By exploiting this fact and considering a rich class of exponential family distributions, we establish sufficient conditions for identification of the complete-data distribution as well as the entire missingness mechanism. We then propose methods for testing the independence restrictions encoded in such models using odds ratio as our parameter of interest. We adopt two semiparametric approaches for estimating the odds ratio parameter and establish the corresponding asymptotic theories: one involves maximizing a conditional likelihood with order statistics and the other uses estimating equations. The utility of our methods is illustrated via simulation studies.
We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.
This paper investigates the problem of simultaneously predicting multiple binary responses by utilizing a shared set of covariates. Our approach incorporates machine learning techniques for binary classification, without making assumptions about the underlying observations. Instead, our focus lies on a group of predictors, aiming to identify the one that minimizes prediction error. Unlike previous studies that primarily address estimation error, we directly analyze the prediction error of our method using PAC-Bayesian bounds techniques. In this paper, we introduce a pseudo-Bayesian approach capable of handling incomplete response data. Our strategy is efficiently implemented using the Langevin Monte Carlo method. Through simulation studies and a practical application using real data, we demonstrate the effectiveness of our proposed method, producing comparable or sometimes superior results compared to the current state-of-the-art method.
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models. These models exhibit intriguing properties, such as the existence of the maximum likelihood estimator with merely two observations for M-matrices \citep{lauritzen2019maximum,slawski2015estimation} and even one observation for diagonally dominant M-matrices \citep{truell2021maximum}. We propose an adaptive multiple-stage estimation method that refines the estimate by solving a weighted $\ell_1$-regularized problem at each stage. Furthermore, we develop a unified framework based on the gradient projection method to solve the regularized problem, incorporating distinct projections to handle the constraints of M-matrices and diagonally dominant M-matrices. A theoretical analysis of the estimation error is provided. Our method outperforms state-of-the-art methods in precision matrix estimation and graph edge identification, as evidenced by synthetic and financial time-series data sets.
Neural processes are a family of probabilistic models that inherit the flexibility of neural networks to parameterize stochastic processes. Despite providing well-calibrated predictions, especially in regression problems, and quick adaptation to new tasks, the Gaussian assumption that is commonly used to represent the predictive likelihood fails to capture more complicated distributions such as multimodal ones. To overcome this limitation, we propose Conditional Quantile Neural Processes (CQNPs), a new member of the neural processes family, which exploits the attractive properties of quantile regression in modeling the distributions irrespective of their form. By introducing an extension of quantile regression where the model learns to focus on estimating informative quantiles, we show that the sampling efficiency and prediction accuracy can be further enhanced. Our experiments with real and synthetic datasets demonstrate substantial improvements in predictive performance compared to the baselines, and better modeling of heterogeneous distributions' characteristics such as multimodality.
In modern scientific experiments, we frequently encounter data that have large dimensions, and in some experiments, such high dimensional data arrive sequentially rather than full data being available all at a time. We develop multiple testing procedures with simultaneous control of false discovery and nondiscovery rates when $m$-variate data vectors $\mathbf{X}_1, \mathbf{X}_2, \dots$ are observed sequentially or in groups and each coordinate of these vectors leads to a hypothesis testing. Existing multiple testing methods for sequential data uses fixed stopping boundaries that do not depend on sample size, and hence, are quite conservative when the number of hypotheses $m$ is large. We propose sequential tests based on adaptive stopping boundaries that ensure shrinkage of the continue sampling region as the sample size increases. Under minimal assumptions on the data sequence, we first develop a test based on an oracle test statistic such that both false discovery rate (FDR) and false nondiscovery rate (FNR) are nearly equal to some prefixed levels with strong control. Under a two-group mixture model assumption, we propose a data-driven stopping and decision rule based on local false discovery rate statistic that mimics the oracle rule and guarantees simultaneous control of FDR and FNR asymptotically as $m$ tends to infinity. Both the oracle and the data-driven stopping times are shown to be finite (i.e., proper) with probability 1 for all finite $m$ and converge to a finite constant as $m$ grows to infinity. Further, we compare the data-driven test with the existing gap rule proposed in He and Bartroff (2021) and show that the ratio of the expected sample sizes of our method and the gap rule tends to zero as $m$ goes to infinity. Extensive analysis of simulated datasets as well as some real datasets illustrate the superiority of the proposed tests over some existing methods.
Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects informative data to efficiently build an accurate model of an unknown target function under robot embodiment constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic model's prediction uncertainty to identify critical areas for informative data collection. Gaussian Processes (GPs) with stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-stationary -- different locations do not have the same degree of variability. As a result, the prediction uncertainty does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-stationary kernels named Attentive Kernel (AK), which is simple, robust, and can extend any existing kernel to a non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations, enabling the model to characterize salient environmental features.
We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma and Chen. Instead of treating this observation bias as a disadvantage, as is typically the case, our goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we propose a simple two-stage algorithm: (i) interpreting the observation pattern as a fully observed noisy matrix, we apply traditional matrix completion methods to the observation pattern to estimate the distances between the latent factors; (ii) we apply supervised learning on the recovered features to impute missing observations. We establish finite-sample error rates that are competitive with the corresponding supervised learning parametric rates, suggesting that our learning performance is comparable to having access to the unobserved covariates. Empirical evaluation using a real-world dataset reflects similar performance gains, with our algorithm's estimates having 30x smaller mean squared error compared to traditional matrix completion methods.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.