亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims at providing the summary of the Global Data Science Project (GDSC) for COVID-19. as on May 31 2020. COVID-19 has largely impacted on our societies through both direct and indirect effects transmitted by the policy measures to counter the spread of viruses. We quantitatively analysed the multifaceted impacts of the COVID-19 pandemic on our societies including people's mobility, health, and social behaviour changes. People's mobility has changed significantly due to the implementation of travel restriction and quarantine measurements. Indeed, the physical distance has widened at international (cross-border), national and regional level. At international level, due to the travel restrictions, the number of international flights has plunged overall at around 88 percent during March. In particular, the number of flights connecting Europe dropped drastically in mid of March after the United States announced travel restrictions to Europe and the EU and participating countries agreed to close borders, at 84 percent decline compared to March 10th. Similarly, we examined the impacts of quarantine measures in the major city: Tokyo (Japan), New York City (the United States), and Barcelona (Spain). Within all three cities, we found the significant decline in traffic volume. We also identified the increased concern for mental health through the analysis of posts on social networking services such as Twitter and Instagram. Notably, in the beginning of April 2020, the number of post with #depression on Instagram doubled, which might reflect the rise in mental health awareness among Instagram users. Besides, we identified the changes in a wide range of people's social behaviors, as well as economic impacts through the analysis of Instagram data and primary survey data.

相關內容

Introduction: The aim of our retrospective study was to quantify the impact of Covid-19 on the temporal distribution of Emergency Medical Services (EMS) demand in Travis County, Austin, Texas and propose a robust model to forecast Covid-19 EMS incidents. Methods: We analyzed the temporal distribution of EMS calls in the Austin-Travis County area between January 1st, 2019, and December 31st, 2020. Change point detection was performed to identify critical dates marking changes in EMS call distributions, and time series regression was applied for forecasting Covid-19 EMS incidents. Results: Two critical dates marked the impact of Covid-19 on the distribution of EMS calls: March 17th, when the daily number of non-pandemic EMS incidents dropped significantly, and May 13th, by which the daily number of EMS calls climbed back to 75% of the number in pre-Covid-19 time. The new daily count of the hospitalization of Covid-19 patients alone proves a powerful predictor of the number of pandemic EMS calls, with an r2 value equal to 0.85. In particular, for every 2.5 cases where EMS takes a Covid-19 patient to a hospital, one person is admitted. Conclusion: The mean daily number of non-pandemic EMS demand was significantly less than the period before Covid-19 pandemic. The number of EMS calls for Covid-19 symptoms can be predicted from the daily new hospitalization of Covid-19 patients. These findings may be of interest to EMS departments as they plan for future pandemics, including the ability to predict pandemic-related calls in an effort to adjust a targeted response.

Despite of the fast development of highly effective vaccines to control the current COVID$-$19 pandemic, the unequal distribution and availability of these vaccines worldwide and the number of people infected in the world lead to the continuous emergence of SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) variants of concern. It is likely that real-time genomic surveillance will be continuously needed as an unceasing monitoring tool, necessary to follow the spillover of the disease spread and the evolution of the virus. In this context, new genomic variants of SARS-CoV-2 that may emerge as a response to selective pressure, including variants refractory to current vaccines, makes genomic surveillance programs tools of utmost importance. Here propose a statistical model for the estimation of the relative frequencies of SARS-CoV-2 variants in pooled samples. This model is built by considering a previously defined selection of genomic polymorphisms that characterize SARS-CoV-2 variants. The methods described here support both raw sequencing reads for polymorphisms-based markers calling and predefined markers in the VCF format. Results obtained by using simulated data show that our method is quite effective in recovering the correct variant proportions. Further, results obtained by considering longitudinal data from wastewater samples of two locations in Switzerland agree well with those describing the epidemiological evolution of COVID-19 variants in clinical samples of these locations. Our results show that the described method can be a valuable tool for tracking the proportions of SARS-CoV-2 variants.

Human-Centered AI (HCAI) refers to the research effort that aims to design and implement AI techniques to support various human tasks, while taking human needs into consideration and preserving human control. In this short position paper, we illustrate how we approach HCAI using a series of research projects around Data Science (DS) works as a case study. The AI techniques built for supporting DS works are collectively referred to as AutoML systems, and their goals are to automate some parts of the DS workflow. We illustrate a three-step systematical research approach(i.e., explore, build, and integrate) and four practical ways of implementation for HCAI systems. We argue that our work is a cornerstone towards the ultimate future of Human-AI Collaboration for DS and beyond, where AI and humans can take complementary and indispensable roles to achieve a better outcome and experience.

Bangladeshi Sign Language (BdSL) is a commonly used medium of communication for the hearing-impaired people in Bangladesh. A real-time BdSL interpreter with no controlled lab environment has a broad social impact and an interesting avenue of research as well. Also, it is a challenging task due to the variation in different subjects (age, gender, color, etc.), complex features, and similarities of signs and clustered backgrounds. However, the existing dataset for BdSL classification task is mainly built in a lab friendly setup which limits the application of powerful deep learning technology. In this paper, we introduce a dataset named BdSL36 which incorporates background augmentation to make the dataset versatile and contains over four million images belonging to 36 categories. Besides, we annotate about 40,000 images with bounding boxes to utilize the potentiality of object detection algorithms. Furthermore, several intensive experiments are performed to establish the baseline performance of our BdSL36. Moreover, we employ beta testing of our classifiers at the user level to justify the possibilities of real-world application with this dataset. We believe our BdSL36 will expedite future research on practical sign letter classification. We make the datasets and all the pre-trained models available for further researcher.

This paper has the goal of evaluating how changes in mobility has affected the infection spread of Covid-19 throughout the 2020-2021 years. However, identifying a "clean" causal relation is not an easy task due to a high number of non-observable (behavioral) effects. We suggest the usage of Google Trends and News-based indexes as controls for some of these behavioral effects and we find that a 1\% increase in residential mobility (i.e. a reduction in overall mobility) have significant impacts for reducing both Covid-19 cases (at least 3.02\% on a one-month horizon) and deaths (at least 2.43\% at the two-weeks horizon) over the 2020-2021 sample. We also evaluate the effects of mobility on Covid-19 spread on the restricted sample (only 2020) where vaccines were not available. The results of diminishing mobility over cases and deaths on the restricted sample are still observable (with similar magnitudes in terms of residential mobility) and cumulative higher, as the effects of restricting workplace mobility turns to be also significant: a 1\% decrease in workplace mobility diminishes cases around 1\% and deaths around 2\%.

Consumer Internet of things research often involves collecting network traffic sent or received by IoT devices. These data are typically collected via crowdsourcing or while researchers manually interact with IoT devices in a laboratory setting. However, manual interactions and crowdsourcing are often tedious, expensive, inaccurate, or do not provide comprehensive coverage of possible IoT device behaviors. We present a new method for generating IoT network traffic using a robotic arm to automate user interactions with devices. This eliminates manual button pressing and enables permutation-based interaction sequences that rigorously explore the range of possible device behaviors. We test this approach with an Arduino-controlled robotic arm, a smart speaker and a smart thermostat, using machine learning to demonstrate that collected network traffic contains information about device interactions that could be useful for network, security, or privacy analyses. We also provide source code and documentation allowing researchers to easily automate IoT device interactions and network traffic collection in future studies.

In this work, we announce a comprehensive well curated and opensource dataset with millions of samples for pre-college and college level problems in mathematicsand science. A preliminary set of results using transformer architecture with character to character encoding is shown. The dataset identifies some challenging problem and invites research on better architecture search

In 2020, the White House released the, "Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset," wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present an automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on graph-mining and the transformer model. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains (in some domains up to 0.97% ROC AUC) in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover on-going research findings such as the relationship between COVID-19 and oxytocin hormone.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Multi-source translation is an approach to exploit multiple inputs (e.g. in two different languages) to increase translation accuracy. In this paper, we examine approaches for multi-source neural machine translation (NMT) using an incomplete multilingual corpus in which some translations are missing. In practice, many multilingual corpora are not complete due to the difficulty to provide translations in all of the relevant languages (for example, in TED talks, most English talks only have subtitles for a small portion of the languages that TED supports). Existing studies on multi-source translation did not explicitly handle such situations. This study focuses on the use of incomplete multilingual corpora in multi-encoder NMT and mixture of NMT experts and examines a very simple implementation where missing source translations are replaced by a special symbol <NULL>. These methods allow us to use incomplete corpora both at training time and test time. In experiments with real incomplete multilingual corpora of TED Talks, the multi-source NMT with the <NULL> tokens achieved higher translation accuracies measured by BLEU than those by any one-to-one NMT systems.

北京阿比特科技有限公司