This paper proposes a new metric to measure the calibration error of probabilistic binary classifiers, called test-based calibration error (TCE). TCE incorporates a novel loss function based on a statistical test to examine the extent to which model predictions differ from probabilities estimated from data. It offers (i) a clear interpretation, (ii) a consistent scale that is unaffected by class imbalance, and (iii) an enhanced visual representation with repect to the standard reliability diagram. In addition, we introduce an optimality criterion for the binning procedure of calibration error metrics based on a minimal estimation error of the empirical probabilities. We provide a novel computational algorithm for optimal bins under bin-size constraints. We demonstrate properties of TCE through a range of experiments, including multiple real-world imbalanced datasets and ImageNet 1000.
Existing methods for the 4D reconstruction of general, non-rigidly deforming objects focus on novel-view synthesis and neglect correspondences. However, time consistency enables advanced downstream tasks like 3D editing, motion analysis, or virtual-asset creation. We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner. Our dynamic-NeRF method takes multi-view RGB videos and background images from static cameras with known camera parameters as input. It then reconstructs the deformations of an estimated canonical model of the geometry and appearance in an online fashion. Since this canonical model is time-invariant, we obtain correspondences even for long-term, long-range motions. We employ neural scene representations to parametrize the components of our method. Like prior dynamic-NeRF methods, we use a backwards deformation model. We find non-trivial adaptations of this model necessary to handle larger motions: We decompose the deformations into a strongly regularized coarse component and a weakly regularized fine component, where the coarse component also extends the deformation field into the space surrounding the object, which enables tracking over time. We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
Millimeter wave (mmWave) based speech recognition provides more possibility for audio-related applications, such as conference speech transcription and eavesdropping. However, considering the practicality in real scenarios, latency and recognizable vocabulary size are two critical factors that cannot be overlooked. In this paper, we propose Radio2Text, the first mmWave-based system for streaming automatic speech recognition (ASR) with a vocabulary size exceeding 13,000 words. Radio2Text is based on a tailored streaming Transformer that is capable of effectively learning representations of speech-related features, paving the way for streaming ASR with a large vocabulary. To alleviate the deficiency of streaming networks unable to access entire future inputs, we propose the Guidance Initialization that facilitates the transfer of feature knowledge related to the global context from the non-streaming Transformer to the tailored streaming Transformer through weight inheritance. Further, we propose a cross-modal structure based on knowledge distillation (KD), named cross-modal KD, to mitigate the negative effect of low quality mmWave signals on recognition performance. In the cross-modal KD, the audio streaming Transformer provides feature and response guidance that inherit fruitful and accurate speech information to supervise the training of the tailored radio streaming Transformer. The experimental results show that our Radio2Text can achieve a character error rate of 5.7% and a word error rate of 9.4% for the recognition of a vocabulary consisting of over 13,000 words.
Ability to test firmware on embedded devices is critical to discovering vulnerabilities prior to their adversarial exploitation. State-of-the-art automated testing methods rehost firmware in emulators and attempt to facilitate inputs from a diversity of methods (interrupt driven, status polling) and a plethora of devices (such as modems and GPS units). Despite recent progress to tackle peripheral input generation challenges in rehosting, a firmware's expectation of multi-byte magic values supplied from peripheral inputs for string operations still pose a significant roadblock. We solve the impediment posed by multi-byte magic strings in monolithic firmware. We propose feedback mechanisms for input-to-state mapping and retaining seeds for targeted replacement mutations with an efficient method to solve multi-byte comparisons. The feedback allows an efficient search over a combinatorial solution-space. We evaluate our prototype implementation, SplITS, with a diverse set of 21 real-world monolithic firmware binaries used in prior works, and 3 new binaries from popular open source projects. SplITS automatically solves 497% more multi-byte magic strings guarding further execution to uncover new code and bugs compared to state-of-the-art. In 11 of the 12 real-world firmware binaries with string comparisons, including those extensively analyzed by prior works, SplITS outperformed, statistically significantly. We observed up to 161% increase in blocks covered and discovered 6 new bugs that remained guarded by string comparisons. Significantly, deep and difficult to reproduce bugs guarded by comparisons, identified in prior work, were found consistently. To facilitate future research in the field, we release SplITS, the new firmware data sets, and bug analysis at //github.com/SplITS-Fuzzer
Current deep visual local feature detectors do not model the spatial uncertainty of detected features, producing suboptimal results in downstream applications. In this work, we propose two post-hoc covariance estimates that can be plugged into any pretrained deep feature detector: a simple, isotropic covariance estimate that uses the predicted score at a given pixel location, and a full covariance estimate via the local structure tensor of the learned score maps. Both methods are easy to implement and can be applied to any deep feature detector. We show that these covariances are directly related to errors in feature matching, leading to improvements in downstream tasks, including solving the perspective-n-point problem and motion-only bundle adjustment. Code is available at //github.com/javrtg/DAC
This paper reports on the development of \textbf{a novel style guided diffusion model (SGDiff)} which overcomes certain weaknesses inherent in existing models for image synthesis. The proposed SGDiff combines image modality with a pretrained text-to-image diffusion model to facilitate creative fashion image synthesis. It addresses the limitations of text-to-image diffusion models by incorporating supplementary style guidance, substantially reducing training costs, and overcoming the difficulties of controlling synthesized styles with text-only inputs. This paper also introduces a new dataset -- SG-Fashion, specifically designed for fashion image synthesis applications, offering high-resolution images and an extensive range of garment categories. By means of comprehensive ablation study, we examine the application of classifier-free guidance to a variety of conditions and validate the effectiveness of the proposed model for generating fashion images of the desired categories, product attributes, and styles. The contributions of this paper include a novel classifier-free guidance method for multi-modal feature fusion, a comprehensive dataset for fashion image synthesis application, a thorough investigation on conditioned text-to-image synthesis, and valuable insights for future research in the text-to-image synthesis domain. The code and dataset are available at: \url{//github.com/taited/SGDiff}.
This paper introduces a new fundamental characteristic, \ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal'' and ``Plants'' have a large semantic scale while ``Elk'' has a much smaller one. Under a small semantic scale, two different elks may look quite \emph{different} to each other . However, under a large semantic scale (\eg, animals and plants), these two elks should be measured as being \emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, \ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, \emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at //github.com/SupetZYK/DynamicMetricLearning.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.