We consider high-dimensional measurement errors with high-frequency data. Our objective is on recovering the high-dimensional cross-sectional covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time and the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding, and then conduct a series of comprehensive theoretical investigations of the proposed estimator. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $\alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions; and we demonstrate with concrete cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We also extensively analyze our estimator in the setting with jumps, and show that its performance is reasonably robust. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
We study the deviation inequality for a sum of high-dimensional random matrices and operators with dependence and arbitrary heavy tails. There is an increase in the importance of the problem of estimating high-dimensional matrices, and dependence and heavy-tail properties of data are among the most critical topics currently. In this paper, we derive a dimension-free upper bound on the deviation, that is, the bound does not depend explicitly on the dimension of matrices, but depends on their effective rank. Our result is a generalization of several existing studies on the deviation of the sum of matrices. Our proof is based on two techniques: (i) a variational approximation of the dual of moment generating functions, and (ii) robustification through truncation of eigenvalues of matrices. We show that our results are applicable to several problems such as covariance matrix estimation, hidden Markov models, and overparameterized linear regression models.
This work provides a theoretical analysis for optimally solving the pose estimation problem using total least squares for vector observations from landmark features, which is central to applications involving simultaneous localization and mapping. First, the optimization process is formulated with observation vectors extracted from point-cloud features. Then, error-covariance expressions are derived. The attitude and position estimates obtained via the derived optimization process are proven to reach the bounds defined by the Cram\'er-Rao lower bound under the small-angle approximation of attitude errors. A fully populated observation noise-covariance matrix is assumed as the weight in the cost function to cover the most general case of the sensor uncertainty. This includes more generic correlations in the errors than previous cases involving an isotropic noise assumption. The proposed solution is verified using Monte Carlo simulations and an experiment with an actual LIDAR to validate the error-covariance analysis.
Two-stage randomized experiments are becoming an increasingly popular experimental design for causal inference when the outcome of one unit may be affected by the treatment assignments of other units in the same cluster. In this paper, we provide a methodological framework for general tools of statistical inference and power analysis for two-stage randomized experiments. Under the randomization-based framework, we consider the estimation of a new direct effect of interest as well as the average direct and spillover effects studied in the literature. We provide unbiased estimators of these causal quantities and their conservative variance estimators in a general setting. Using these results, we then develop hypothesis testing procedures and derive sample size formulas. We theoretically compare the two-stage randomized design with the completely randomized and cluster randomized designs, which represent two limiting designs. Finally, we conduct simulation studies to evaluate the empirical performance of our sample size formulas. For empirical illustration, the proposed methodology is applied to the randomized evaluation of the Indian national health insurance program. An open-source software package is available for implementing the proposed methodology.
Simulation of stochastic partial differential equations (SPDE) on a general domain requires a discretization of the noise. In this paper, the noise is discretized by a piecewise linear interpolation. The error caused by this is analyzed in the context of a fully discrete finite element approximation of a semilinear stochastic reaction-advection-diffusion equation on a convex polygon. The noise is Gaussian, white in time and correlated in space. It is modeled as a standard cylindrical Wiener process on the reproducing kernel Hilbert space associated to the covariance kernel. The noise is assumed to extend to a larger polygon than the SPDE domain to allow for sampling by the circulant embedding method. The interpolation error is analyzed under mild assumptions on the kernel. The main tools used are Hilbert--Schmidt bounds of multiplication operators onto negative order Sobolev spaces and an error bound for the finite element interpolant in fractional Sobolev norms. Examples with covariance kernels encountered in applications are illustrated in numerical simulations using the FEniCS finite element software. Conclusions from the analysis include that interpolation of noise with Mat\'ern kernels does not cause an additional error, that there exist kernels where the interpolation error dominates and that generation of noise on a coarser mesh than that of the SPDE discretization does not always result in a loss of accuracy.
In this paper, we propose a class of low-rank panel quantile regression models which allow for unobserved slope heterogeneity over both individuals and time. We estimate the heterogeneous intercept and slope matrices via nuclear norm regularization followed by sample splitting, row- and column-wise quantile regressions and debiasing. We show that the estimators of the factors and factor loadings associated with the intercept and slope matrices are asymptotically normally distributed. In addition, we develop two specification tests: one for the null hypothesis that the slope coefficient is a constant over time and/or individuals under the case that true rank of slope matrix equals one, and the other for the null hypothesis that the slope coefficient exhibits an additive structure under the case that the true rank of slope matrix equals two. We illustrate the finite sample performance of estimation and inference via Monte Carlo simulations and real datasets.
We propose a generalization of the synthetic control and synthetic interventions methodology to the dynamic treatment regime. We consider the estimation of unit-specific treatment effects from panel data collected via a dynamic treatment regime and in the presence of unobserved confounding. That is, each unit receives multiple treatments sequentially, based on an adaptive policy, which depends on a latent endogenously time-varying confounding state of the treated unit. Under a low-rank latent factor model assumption and a technical overlap assumption we propose an identification strategy for any unit-specific mean outcome under any sequence of interventions. The latent factor model we propose admits linear time-varying and time-invariant dynamical systems as special cases. Our approach can be seen as an identification strategy for structural nested mean models under a low-rank latent factor assumption on the blip effects. Our method, which we term "synthetic blip effects", is a backwards induction process, where the blip effect of a treatment at each period and for a target unit is recursively expressed as linear combinations of blip effects of a carefully chosen group of other units that received the designated treatment. Our work avoids the combinatorial explosion in the number of units that would be required by a vanilla application of prior synthetic control and synthetic intervention methods in such dynamic treatment regime settings.
Bayesian variable selection methods are powerful techniques for fitting and inferring on sparse high-dimensional linear regression models. However, many are computationally intensive or require restrictive prior distributions on model parameters. Likelihood based penalization methods are more computationally friendly, but resource intensive refitting techniques are needed for inference. In this paper, we proposed an efficient and powerful Bayesian approach for sparse high-dimensional linear regression. Minimal prior assumptions on the parameters are required through the use of plug-in empirical Bayes estimates of hyperparameters. Efficient maximum a posteriori probability (MAP) estimation is completed through the use of a partitioned and extended expectation conditional maximization (ECM) algorithm. The result is a PaRtitiOned empirical Bayes Ecm (PROBE) algorithm applied to sparse high-dimensional linear regression. We propose methods to estimate credible and prediction intervals for predictions of future values. We compare the empirical properties of predictions and our predictive inference to comparable approaches with numerous simulation studies and an analysis of cancer cell lines drug response study. The proposed approach is implemented in the R package probe.
High-dimensional matrix-variate time series data are becoming widely available in many scientific fields, such as economics, biology, and meteorology. To achieve significant dimension reduction while preserving the intrinsic matrix structure and temporal dynamics in such data, Wang et al. (2017) proposed a matrix factor model that is shown to provide effective analysis. In this paper, we establish a general framework for incorporating domain or prior knowledge in the matrix factor model through linear constraints. The proposed framework is shown to be useful in achieving parsimonious parameterization, facilitating interpretation of the latent matrix factor, and identifying specific factors of interest. Fully utilizing the prior-knowledge-induced constraints results in more efficient and accurate modeling, inference, dimension reduction as well as a clear and better interpretation of the results. In this paper, constrained, multi-term, and partially constrained factor models for matrix-variate time series are developed, with efficient estimation procedures and their asymptotic properties. We show that the convergence rates of the constrained factor loading matrices are much faster than those of the conventional matrix factor analysis under many situations. Simulation studies are carried out to demonstrate the finite-sample performance of the proposed method and its associated asymptotic properties. We illustrate the proposed model with three applications, where the constrained matrix-factor models outperform their unconstrained counterparts in the power of variance explanation under the out-of-sample 10-fold cross-validation setting.
This paper considers the estimation and inference of the low-rank components in high-dimensional matrix-variate factor models, where each dimension of the matrix-variates ($p \times q$) is comparable to or greater than the number of observations ($T$). We propose an estimation method called $\alpha$-PCA that preserves the matrix structure and aggregates mean and contemporary covariance through a hyper-parameter $\alpha$. We develop an inferential theory, establishing consistency, the rate of convergence, and the limiting distributions, under general conditions that allow for correlations across time, rows, or columns of the noise. We show both theoretical and empirical methods of choosing the best $\alpha$, depending on the use-case criteria. Simulation results demonstrate the adequacy of the asymptotic results in approximating the finite sample properties. The $\alpha$-PCA compares favorably with the existing ones. Finally, we illustrate its applications with a real numeric data set and two real image data sets. In all applications, the proposed estimation procedure outperforms previous methods in the power of variance explanation using out-of-sample 10-fold cross-validation.
We introduce a Fourier-based fast algorithm for Gaussian process regression. It approximates a translationally-invariant covariance kernel by complex exponentials on an equispaced Cartesian frequency grid of $M$ nodes. This results in a weight-space $M\times M$ system matrix with Toeplitz structure, which can thus be applied to a vector in ${\mathcal O}(M \log{M})$ operations via the fast Fourier transform (FFT), independent of the number of data points $N$. The linear system can be set up in ${\mathcal O}(N + M \log{M})$ operations using nonuniform FFTs. This enables efficient massive-scale regression via an iterative solver, even for kernels with fat-tailed spectral densities (large $M$). We include a rigorous error analysis of the kernel approximation, the resulting accuracy (relative to "exact" GP regression), and the condition number. Numerical experiments for squared-exponential and Mat\'ern kernels in one, two and three dimensions often show 1-2 orders of magnitude acceleration over state-of-the-art rank-structured solvers at comparable accuracy. Our method allows 2D Mat\'ern-${\small \frac{3}{2}}$ regression from $N=10^9$ data points to be performed in 2 minutes on a standard desktop, with posterior mean accuracy $10^{-3}$. This opens up spatial statistics applications 100 times larger than previously possible.