亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a Multimodal Interlaced Transformer (MIT) that jointly considers 2D and 3D data for weakly supervised point cloud segmentation. Research studies have shown that 2D and 3D features are complementary for point cloud segmentation. However, existing methods require extra 2D annotations to achieve 2D-3D information fusion. Considering the high annotation cost of point clouds, effective 2D and 3D feature fusion based on weakly supervised learning is in great demand. To this end, we propose a transformer model with two encoders and one decoder for weakly supervised point cloud segmentation using only scene-level class tags. Specifically, the two encoders compute the self-attended features for 3D point clouds and 2D multi-view images, respectively. The decoder implements interlaced 2D-3D cross-attention and carries out implicit 2D and 3D feature fusion. We alternately switch the roles of queries and key-value pairs in the decoder layers. It turns out that the 2D and 3D features are iteratively enriched by each other. Experiments show that it performs favorably against existing weakly supervised point cloud segmentation methods by a large margin on the S3DIS and ScanNet benchmarks. The project page will be available at //jimmy15923.github.io/mit_web/.

相關內容

根據激光測量原理得到的點云,包括三維坐標(XYZ)和激光反射強度(Intensity)。 根據攝影測量原理得到的點云,包括三維坐標(XYZ)和顏色信息(RGB)。 結合激光測量和攝影測量原理得到點云,包括三維坐標(XYZ)、激光反射強度(Intensity)和顏色信息(RGB)。 在獲取物體表面每個采樣點的空間坐標后,得到的是一個點的集合,稱之為“點云”(Point Cloud)

Semantic communications are expected to become the core new paradigms of the sixth generation (6G) wireless networks. Most existing works implicitly utilize channel information for codecs training, which leads to poor communications when channel type or statistical characteristics change. To tackle this issue posed by various channels, a novel channel-transferable semantic communications (CT-SemCom) framework is proposed, which adapts the codecs learned on one type of channel to other types of channels. Furthermore, integrating the proposed framework and the orthogonal frequency division multiplexing systems integrating non-orthogonal multiple access technologies, i.e., OFDM-NOMA systems, a power allocation problem to realize the transfer from additive white Gaussian noise (AWGN) channels to multi-subcarrier Rayleigh fading channels is formulated. We then design a semantics-similar dual transformation (SSDT) algorithm to derive analytical solutions with low complexity. Simulation results show that the proposed CT-SemCom framework with SSDT algorithm significantly outperforms the existing work w.r.t. channel transferability, e.g., the peak signal-to-noise ratio (PSNR) of image transmission improves by 4.2-7.3 dB under different variances of Rayleigh fading channels.

For the point cloud registration task, a significant challenge arises from non-overlapping points that consume extensive computational resources while negatively affecting registration accuracy. In this paper, we introduce a dynamic approach, widely utilized to improve network efficiency in computer vision tasks, to the point cloud registration task. We employ an iterative registration process on point cloud data multiple times to identify regions where matching points cluster, ultimately enabling us to remove noisy points. Specifically, we begin with deep global sampling to perform coarse global registration. Subsequently, we employ the proposed refined node proposal module to further narrow down the registration region and perform local registration. Furthermore, we utilize a spatial consistency-based classifier to evaluate the results of each registration stage. The model terminates once it reaches sufficient confidence, avoiding unnecessary computations. Extended experiments demonstrate that our model significantly reduces time consumption compared to other methods with similar results, achieving a speed improvement of over 41% on indoor dataset (3DMatch) and 33% on outdoor datasets (KITTI) while maintaining competitive registration recall requirements.

Point clouds have shown significant potential in various domains, including Simultaneous Localization and Mapping (SLAM). However, existing approaches either rely on dense point clouds to achieve high localization accuracy or use generalized descriptors to reduce map size. Unfortunately, these two aspects seem to conflict with each other. To address this limitation, we propose a unified architecture, DeepPointMap, achieving excellent preference on both aspects. We utilize neural network to extract highly representative and sparse neural descriptors from point clouds, enabling memory-efficient map representation and accurate multi-scale localization tasks (e.g., odometry and loop-closure). Moreover, we showcase the versatility of our framework by extending it to more challenging multi-agent collaborative SLAM. The promising results obtained in these scenarios further emphasize the effectiveness and potential of our approach.

Channel Charting aims to construct a map of the radio environment by leveraging similarity relationships found in high-dimensional channel state information. Although resulting channel charts usually accurately represent local neighborhood relationships, even under conditions with strong multipath propagation, they often fall short in capturing global geometric features. On the other hand, classical model-based localization methods, such as triangulation and multilateration, can easily localize signal sources in the global coordinate frame. However, these methods rely heavily on the assumption of line-of-sight channels and distributed antenna deployments. Based on measured data, we compare classical source localization techniques to channel charts with respect to localization performance. We suggest and evaluate methods to enhance Channel Charting with model-based localization approaches: One approach involves using information derived from classical localization methods to map channel chart locations to physical positions after conventional training of the forward charting function. Foremost, though, we suggest to incorporate information from model-based approaches during the training of the forward charting function in what we call "augmented Channel Charting". We demonstrate that Channel Charting can outperform classical localization methods on the considered dataset.

Communication in optical downlinks of low earth orbit (LEO) satellites requires interleaving to enable reliable data transmission. These interleavers are orders of magnitude larger than conventional interleavers utilized for example in wireless communication. Hence, the capacity of on-chip memories (SRAMs) is insufficient to store all symbols and external memories (DRAMs) must be used. Due to the overall requirement for very high data rates beyond 100 Gbit/s, DRAM bandwidth then quickly becomes a critical bottleneck of the communication system. In this paper, we investigate triangular block interleavers for the aforementioned application and show that the standard mapping of symbols used for SRAMs results in low bandwidth utilization for DRAMs, in some cases below 50 %. As a solution, we present a novel mapping approach that combines different optimizations and achieves over 90 % bandwidth utilization in all tested configurations. Further, the mapping can be applied to any JEDEC-compliant DRAM device.

Low earth orbit (LEO) satellite communications can provide ubiquitous and reliable services, making it an essential part of the Internet of Everything network. Beam hopping (BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping (JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game, and the Nash equilibrium (NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedy-based BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%, 156.06%, 15.39% and 8.17%, respectively.

Deep convolutional neural networks (CNNs) have been shown to predict poverty and development indicators from satellite images with surprising accuracy. This paper presents a first attempt at analyzing the CNNs responses in detail and explaining the basis for the predictions. The CNN model, while trained on relatively low resolution day- and night-time satellite images, is able to outperform human subjects who look at high-resolution images in ranking the Wealth Index categories. Multiple explainability experiments performed on the model indicate the importance of the sizes of the objects, pixel colors in the image, and provide a visualization of the importance of different structures in input images. A visualization is also provided of type images that maximize the network prediction of Wealth Index, which provides clues on what the CNN prediction is based on.

Sparse LiDAR point clouds cause severe loss of detail of static structures and reduce the density of static points available for navigation. Reduced density can be detrimental to navigation under several scenarios. We observe that despite high sparsity, in most cases, the global topology of LiDAR outlining the static structures can be inferred. We utilize this property to obtain a backbone skeleton of a static LiDAR scan in the form of a single connected component that is a proxy to its global topology. We utilize the backbone to augment new points along static structures to overcome sparsity. Newly introduced points could correspond to existing static structures or to static points that were earlier obstructed by dynamic objects. To the best of our knowledge, we are the first to use this strategy for sparse LiDAR point clouds. Existing solutions close to our approach fail to identify and preserve the global static LiDAR topology and generate sub-optimal points. We propose GLiDR, a Graph Generative network that is topologically regularized using 0-dimensional Persistent Homology (PH) constraints. This enables GLiDR to introduce newer static points along a topologically consistent global static LiDAR backbone. GLiDR generates precise static points using 32x sparser dynamic scans and performs better than the baselines across three datasets. The newly introduced static points allow GLiDR to outperform LiDAR-based navigation using SLAM in several settings. GLiDR generates a valuable byproduct - an accurate binary segmentation mask of static and dynamic objects that is helpful for navigation planning and safety in constrained environments.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

北京阿比特科技有限公司