亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Balance and gait disorders are the second leading cause of falls, which, along with consequent injuries, are reported as major public health problems all over the world. For patients who do not require mechanical support, vibrotactile feedback interfaces have proven to be a successful approach in restoring balance. Most of the existing strategies assess trunk or head tilt and velocity or plantar forces, and are limited to the analysis of stance. On the other hand, central to balance control is the need to maintain the body's centre of pressure (CoP) within feasible limits of the support polygon (SP), as in standing, or on track to a new SP, as in walking. Hence, this paper proposes an exploratory study to investigate whether vibrotactile feedback can be employed to lead human CoP during walking. The ErgoTac-Belt vibrotactile device is introduced to instruct the users about the direction to take, both in the antero-posterior and medio-lateral axes. An anticipatory strategy is adopted here, to give the users enough time to react to the stimuli. Experiments on ten healthy subjects demonstrated the promising capability of the proposed device to guide the users' CoP along a predefined reference path, with similar performance as the one achieved with visual feedback. Future developments will investigate our strategy and device in guiding the CoP of elderly or individuals with vestibular impairments, who may not be aware of or, able to figure out, a safe and ergonomic CoP path.

相關內容

Power analysis poses a significant threat to the security of cryptographic algorithms, as it can be leveraged to recover secret keys. While various software-based countermeasures exist to mitigate this non-invasive attack, they often involve a trade-off between time and space constraints. Techniques such as masking and shuffling, while effective, can noticeably impact execution speed and rely heavily on run-time random number generators. On the contrary, internally encoded implementations of block ciphers offer an alternative approach that does not rely on run-time random sources, but it comes with the drawback of requiring substantial memory space to accommodate lookup tables. Internal encoding, commonly employed in white-box cryptography, suffers from a security limitation as it does not effectively protect the secret key against statistical analysis. To overcome this weakness, this paper introduces a secure internal encoding method for an AES implementation. By addressing the root cause of vulnerabilities found in previous encoding methods, we propose a balanced encoding technique that aims to minimize the problematic correlation with key-dependent intermediate values. We analyze the potential weaknesses associated with the balanced encoding and present a method that utilizes complementary sets of lookup tables. In this approach, the size of the lookup tables is approximately 512KB, and the number of table lookups is 1,024. This is comparable to the table size of non-protected white-box AES-128 implementations, while requiring only half the number of lookups. By adopting this method, our aim is to introduce a non-masking technique that mitigates the vulnerability to statistical analysis present in current internally-encoded AES implementations.

This paper proposes a unified approach for dynamic modeling and simulations of general tensegrity structures with rigid bars and rigid bodies of arbitrary shapes. The natural coordinates are adopted as a non-minimal description in terms of different combinations of basic points and base vectors to resolve the heterogeneity between rigid bodies and rigid bars in three-dimensional space. This leads to a set of differential-algebraic equations with a constant mass matrix and free from trigonometric functions. Formulations for linearized dynamics are derived to enable modal analysis around static equilibrium. For numerical analysis of nonlinear dynamics, we derive a modified symplectic integration scheme which yields realistic results for long-time simulations, and accommodates non-conservative forces as well as boundary conditions. Numerical examples demonstrate the efficacy of the proposed approach for dynamic simulations of Class-1-to-$k$ general tensegrity structures under complex situations, including dynamic external loads, cable-based deployments, and moving boundaries. The novel tensegrity structures also exemplify new ways to create multi-functional structures.

We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.

Quantum computing has emerged as a promising field with the potential to revolutionize various domains by harnessing the principles of quantum mechanics. As quantum hardware and algorithms continue to advance, the development of high-quality quantum software has become crucial. However, testing quantum programs poses unique challenges due to the distinctive characteristics of quantum systems and the complexity of multi-subroutine programs. In this paper, we address the specific testing requirements of multi-subroutine quantum programs. We begin by investigating critical properties through a survey of existing quantum libraries, providing insights into the challenges associated with testing these programs. Building upon this understanding, we present a systematic testing process tailored to the intricacies of quantum programming. The process covers unit testing and integration testing, with a focus on aspects such as IO analysis, quantum relation checking, structural testing, behavior testing, and test case generation. We also introduce novel testing principles and criteria to guide the testing process. To evaluate our proposed approach, we conduct comprehensive testing on typical quantum subroutines, including diverse mutations and randomized inputs. The analysis of failures provides valuable insights into the effectiveness of our testing methodology. Additionally, we present case studies on representative multi-subroutine quantum programs, demonstrating the practical application and effectiveness of our proposed testing processes, principles, and criteria.

The use of social robots as instruments for social mediation has been gaining traction in the field of Human-Robot Interaction (HRI). So far, the design of such robots and their behaviors is often driven by technological platforms and experimental setups in controlled laboratory environments. To address complex social relationships in the real world, it is crucial to consider the actual needs and consequences of the situations found therein. This includes understanding when a mediator is necessary, what specific role such a robot could play, and how it moderates human social dynamics. In this paper, we discuss six relevant roles for robotic mediators that we identified by investigating a collection of videos showing realistic group situations. We further discuss mediation behaviors and target measures to evaluate the success of such interventions. We hope that our findings can inspire future research on robot-assisted social mediation by highlighting a wider set of mediation applications than those found in prior studies. Specifically, we aim to inform the categorization and selection of interaction scenarios that reflect real situations, where a mediation robot can have a positive and meaningful impact on group dynamics.

Stroke patients often experience upper limb impairments that restrict their mobility and daily activities. Physical therapy (PT) is the most effective method to improve impairments, but low patient adherence and participation in PT exercises pose significant challenges. To overcome these barriers, a combination of virtual reality (VR) and robotics in PT is promising. However, few systems effectively integrate VR with robotics, especially for upper limb rehabilitation. This work introduces a new virtual rehabilitation solution that combines VR with robotics and a wearable sensor to analyze elbow joint movements. The framework also enhances the capabilities of a traditional robotic device (KinArm) used for motor dysfunction assessment and rehabilitation. A pilot user study (n = 16) was conducted to evaluate the effectiveness and usability of the proposed VR framework. We used a two-way repeated measures experimental design where participants performed two tasks (Circle and Diamond) with two conditions (VR and VR KinArm). We observed no significant differences in the main effect of conditions for task completion time. However, there were significant differences in both the normalized number of mistakes and recorded elbow joint angles (captured as resistance change values from the wearable sleeve sensor) between the Circle and Diamond tasks. Additionally, we report the system usability, task load, and presence in the proposed VR framework. This system demonstrates the potential advantages of an immersive, multi-sensory approach and provides future avenues for research in developing more cost-effective, tailored, and personalized upper limb solutions for home therapy applications.

Recent years have witnessed the fast penetration of Virtual Reality (VR) and Augmented Reality (AR) systems into our daily life, the security and privacy issues of the VR/AR applications have been attracting considerable attention. Most VR/AR systems adopt head-mounted devices (i.e., smart headsets) to interact with users and the devices usually store the users' private data. Hence, authentication schemes are desired for the head-mounted devices. Traditional knowledge-based authentication schemes for general personal devices have been proved vulnerable to shoulder-surfing attacks, especially considering the headsets may block the sight of the users. Although the robustness of the knowledge-based authentication can be improved by designing complicated secret codes in virtual space, this approach induces a compromise of usability. Another choice is to leverage the users' biometrics; however, it either relies on highly advanced equipments which may not always be available in commercial headsets or introduce heavy cognitive load to users. In this paper, we propose a vibration-based authentication scheme, VibHead, for smart headsets. Since the propagation of vibration signals through human heads presents unique patterns for different individuals, VibHead employs a CNN-based model to classify registered legitimate users based the features extracted from the vibration signals. We also design a two-step authentication scheme where the above user classifiers are utilized to distinguish the legitimate user from illegitimate ones. We implement VibHead on a Microsoft HoloLens equipped with a linear motor and an IMU sensor which are commonly used in off-the-shelf personal smart devices. According to the results of our extensive experiments, with short vibration signals ($\leq 1s$), VibHead has an outstanding authentication accuracy; both FAR and FRR are around 5%.

Multi-robot platforms are playing an increasingly important role in warehouse automation for efficient goods transport. This paper proposes a novel customization of a multi-robot system, called Tactile Mobile Manipulators (TacMMs). Each TacMM integrates a soft optical tactile sensor and a mobile robot with a load-lifting mechanism, enabling cooperative transportation in tasks requiring coordinated physical interaction. More specifically, we mount the TacTip (biomimetic optical tactile sensor) on the Distributed Organisation and Transport System (DOTS) mobile robot. The tactile information then helps the mobile robots adjust the relative robot-object pose, thereby increasing the efficiency of load-lifting tasks. This study compares the performance of using two TacMMs with tactile perception with traditional vision-based pose adjustment for load-lifting. The results show that the average success rate of the TacMMs (66%) is improved over a purely visual-based method (34%), with a larger improvement when the mass of the load was non-uniformly distributed. Although this initial study considers two TacMMs, we expect the benefits of tactile perception to extend to multiple mobile robots. Website: //sites.google.com/view/tacmms

Machine-learning models are known to be vulnerable to evasion attacks that perturb model inputs to induce misclassifications. In this work, we identify real-world scenarios where the true threat cannot be assessed accurately by existing attacks. Specifically, we find that conventional metrics measuring targeted and untargeted robustness do not appropriately reflect a model's ability to withstand attacks from one set of source classes to another set of target classes. To address the shortcomings of existing methods, we formally define a new metric, termed group-based robustness, that complements existing metrics and is better-suited for evaluating model performance in certain attack scenarios. We show empirically that group-based robustness allows us to distinguish between models' vulnerability against specific threat models in situations where traditional robustness metrics do not apply. Moreover, to measure group-based robustness efficiently and accurately, we 1) propose two loss functions and 2) identify three new attack strategies. We show empirically that with comparable success rates, finding evasive samples using our new loss functions saves computation by a factor as large as the number of targeted classes, and finding evasive samples using our new attack strategies saves time by up to 99\% compared to brute-force search methods. Finally, we propose a defense method that increases group-based robustness by up to 3.52$\times$.

The field of few-shot learning has recently seen substantial advancements. Most of these advancements came from casting few-shot learning as a meta-learning problem. Model Agnostic Meta Learning or MAML is currently one of the best approaches for few-shot learning via meta-learning. MAML is simple, elegant and very powerful, however, it has a variety of issues, such as being very sensitive to neural network architectures, often leading to instability during training, requiring arduous hyperparameter searches to stabilize training and achieve high generalization and being very computationally expensive at both training and inference times. In this paper, we propose various modifications to MAML that not only stabilize the system, but also substantially improve the generalization performance, convergence speed and computational overhead of MAML, which we call MAML++.

北京阿比特科技有限公司