In this work, we introduce a novel paradigm called Simulated Overparametrization (SOP). SOP merges the computational efficiency of compact models with the advanced learning proficiencies of overparameterized models. SOP proposes a unique approach to model training and inference, where a model with a significantly larger number of parameters is trained in such a way that a smaller, efficient subset of these parameters is used for the actual computation during inference. Building upon this framework, we present a novel, architecture agnostic algorithm called "majority kernels", which seamlessly integrates with predominant architectures, including Transformer models. Majority kernels enables the simulated training of overparameterized models, resulting in performance gains across architectures and tasks. Furthermore, our approach adds minimal overhead to the cost incurred (wall clock time) at training time. The proposed approach shows strong performance on a wide variety of datasets and models, even outperforming strong baselines such as combinatorial optimization methods based on submodular optimization.
We show how fragile stable matchings are in a decentralized one-to-one matching setting. The classical work of Roth and Vande Vate (1990) suggests simple decentralized dynamics in which randomly-chosen blocking pairs match successively. Such decentralized interactions guarantee convergence to a stable matching. Our first theorem shows that, under mild conditions, any unstable matching -- including a small perturbation of a stable matching -- can culminate in any stable matching through these dynamics. Our second theorem highlights another aspect of fragility: stabilization may take a long time. Even in markets with a unique stable matching, where the dynamics always converge to the same matching, decentralized interactions can require an exponentially long duration to converge. A small perturbation of a stable matching may lead the market away from stability and involve a sizable proportion of mismatched participants for extended periods. Our results hold for a broad class of dynamics.
Routing algorithms play a crucial role in the efficient transmission of data within computer networks by determining the optimal paths for packet forwarding. This paper presents a comprehensive exploration of routing algorithms, focusing on their fundamental principles, classification, challenges, recent advancements, and practical applications. Beginning with an overview of the significance of routing in modern communication networks, the paper delves into the historical evolution of routing algorithms, tracing their development from early approaches to contemporary techniques. Key categories of routing algorithms, including distance vector, link-state, and path vector algorithms, are examined in detail, along with hybrid approaches that integrate multiple routing paradigms. Common challenges faced by routing algorithms, such as routing loops and scalability issues, are identified, and current research efforts aimed at addressing these challenges are discussed.
We present a novel multi-parent crossover operator in genetic algorithms (GAs) called ``Deep Neural Crossover'' (DNC). Unlike conventional GA crossover operators that rely on a random selection of parental genes, DNC leverages the capabilities of deep reinforcement learning (DRL) and an encoder-decoder architecture to select the genes. Specifically, we use DRL to learn a policy for selecting promising genes. The policy is stochastic, to maintain the stochastic nature of GAs, representing a distribution for selecting genes with a higher probability of improving fitness. Our architecture features a recurrent neural network (RNN) to encode the parental genomes into latent memory states, and a decoder RNN that utilizes an attention-based pointing mechanism to generate a distribution over the next selected gene in the offspring. To improve the training time, we present a pre-training approach, wherein the architecture is initially trained on a single problem within a specific domain and then applied to solving other problems of the same domain. We compare DNC to known operators from the literature over two benchmark domains -- bin packing and graph coloring. We compare with both two- and three-parent crossover, outperforming all baselines. DNC is domain-independent and can be easily applied to other problem domains.
I humbly introduce a concept I call "Fregean flows," a graph theoretic representation of classical logic, to show how higher-dimensional graph characteristics might be useful to prove or perhaps at best show the provability of simple deductive statements typically represented as one-dimensional strings of characters. I apply these to a very simple proof, namely proving the equivalence of two definitions for an Abelian group G, an if-and-only-if statement, using a re-representation of statements as vertices and both conjunctions and implications as differently coloured edges. This re-representation of an if-and-only-if is simple but shows unexpected geometry, and I discuss its possible utility in terms of provability through ideas of graph topology, similarities of graph contraction to deductive elimination, and recursion.
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
Intelligence is a fundamental part of all living things, as well as the foundation for Artificial Intelligence. In this primer we explore the ideas associated with intelligence and, by doing so, understand the implications and constraints and potentially outline the capabilities of future systems. Artificial Intelligence, in the form of Machine Learning, has already had a significant impact on our lives. As an exploration, we journey into different parts of intelligence that appear essential. We hope that people find this helpful in determining the future. Also, during the exploration, we hope to create new thought-provoking questions. Intelligence is not a single weighable quantity but a subject that spans Biology, Physics, Philosophy, Cognitive Science, Neuroscience, Psychology, and Computer Science. The historian Yuval Noah Harari pointed out that engineers and scientists in the future will have to broaden their understandings to include disciplines such as Psychology, Philosophy, and Ethics. Fiction writers have long portrayed engineers and scientists as deficient in these areas. Today, in modern society, the emergence of Artificial Intelligence and legal requirements act as forcing functions to push these broader subjects into the foreground. We start with an introduction to intelligence and move quickly to more profound thoughts and ideas. We call this a Life, the Universe, and Everything primer, after the famous science fiction book by Douglas Adams. Forty-two may be the correct answer, but what are the questions?
Correlation acts as a critical role in the tracking field, especially in recent popular Siamese-based trackers. The correlation operation is a simple fusion manner to consider the similarity between the template and the search region. However, the correlation operation itself is a local linear matching process, leading to lose semantic information and fall into local optimum easily, which may be the bottleneck of designing high-accuracy tracking algorithms. Is there any better feature fusion method than correlation? To address this issue, inspired by Transformer, this work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention. Specifically, the proposed method includes an ego-context augment module based on self-attention and a cross-feature augment module based on cross-attention. Finally, we present a Transformer tracking (named TransT) method based on the Siamese-like feature extraction backbone, the designed attention-based fusion mechanism, and the classification and regression head. Experiments show that our TransT achieves very promising results on six challenging datasets, especially on large-scale LaSOT, TrackingNet, and GOT-10k benchmarks. Our tracker runs at approximatively 50 fps on GPU. Code and models are available at //github.com/chenxin-dlut/TransT.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.
This paper discusses and demonstrates the outcomes from our experimentation on Image Captioning. Image captioning is a much more involved task than image recognition or classification, because of the additional challenge of recognizing the interdependence between the objects/concepts in the image and the creation of a succinct sentential narration. Experiments on several labeled datasets show the accuracy of the model and the fluency of the language it learns solely from image descriptions. As a toy application, we apply image captioning to create video captions, and we advance a few hypotheses on the challenges we encountered.