亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Planning module is an essential component of intelligent vehicle study. In this paper, we address the risk-aware planning problem of UGVs through a global-local planning framework which seamlessly integrates risk assessment methods. In particular, a global planning algorithm named Coarse2fine A* is proposed, which incorporates a potential field approach to enhance the safety of the planning results while ensuring the efficiency of the algorithm. A deterministic sampling method for local planning is leveraged and modified to suit off-road environment. It also integrates a risk assessment model to emphasize the avoidance of local risks. The performance of the algorithm is demonstrated through simulation experiments by comparing it with baseline algorithms, where the results of Coarse2fine A* are shown to be approximately 30% safer than those of the baseline algorithms. The practicality and effectiveness of the proposed planning framework are validated by deploying it on a real-world system consisting of a control center and a practical UGV platform.

相關內容

Deviating from conventional perspectives that frame artificial intelligence (AI) systems solely as logic emulators, we propose a novel program of heuristic reasoning. We distinguish between the 'instrumental' use of heuristics to match resources with objectives, and 'mimetic absorption,' whereby heuristics manifest randomly and universally. Through a series of innovative experiments, including variations of the classic Linda problem and a novel application of the Beauty Contest game, we uncover trade-offs between maximizing accuracy and reducing effort that shape the conditions under which AIs transition between exhaustive logical processing and the use of cognitive shortcuts (heuristics). We provide evidence that AIs manifest an adaptive balancing of precision and efficiency, consistent with principles of resource-rational human cognition as explicated in classical theories of bounded rationality and dual-process theory. Our findings reveal a nuanced picture of AI cognition, where trade-offs between resources and objectives lead to the emulation of biological systems, especially human cognition, despite AIs being designed without a sense of self and lacking introspective capabilities.

As a revolutionary technology, reconfigurable intelligent surface (RIS) has been deemed as an indispensable part of the 6th generation communications due to its inherent ability to regulate the wireless channels. However, passive RIS (PRIS) still suffers from some pressing issues, one of which is that the fading of the entire reflection link is proportional to the product of the distances from the base station to the PRIS and from the PRIS to the users, i.e., the productive attenuation. To tackle this problem, active RIS (ARIS) has been proposed to reconfigure the wireless propagation condition and alleviate the productive attenuation. In this paper, we investigate the physical layer security of the ARIS assisted non-orthogonal multiple access (NOMA) networks with the attendance of external and internal eavesdroppers. To be specific, the closed-form expressions of secrecy outage probability (SOP) and secrecy system throughput are derived by invoking both imperfect successive interference cancellation (ipSIC) and perfect SIC. The secrecy diversity orders of legitimate users are obtained at high signal-to-noise ratios. Numerical results are presented to verify the accuracy of the theoretical expressions and indicate that: i) The SOP of ARIS assisted NOMA networks exceeds that of PRIS-NOMA, ARIS/PRIS-assisted orthogonal multiple access (OMA); ii) Due to the balance between the thermal noise and residual interference, introducing excess reconfigurable elements at ARIS is not helpful to reduce the SOP; and iii) The secrecy throughput performance of ARIS-NOMA networks outperforms that of PRIS-NOMA and ARIS/PRIS-OMA networks.

In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Informed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.

Co-evolutionary algorithms have a wide range of applications, such as in hardware design, evolution of strategies for board games, and patching software bugs. However, these algorithms are poorly understood and applications are often limited by pathological behaviour, such as loss of gradient, relative over-generalisation, and mediocre objective stasis. It is an open challenge to develop a theory that can predict when co-evolutionary algorithms find solutions efficiently and reliable. This paper provides a first step in developing runtime analysis for population-based competitive co-evolutionary algorithms. We provide a mathematical framework for describing and reasoning about the performance of co-evolutionary processes. An example application of the framework shows a scenario where a simple co-evolutionary algorithm obtains a solution in polynomial expected time. Finally, we describe settings where the co-evolutionary algorithm needs exponential time with overwhelmingly high probability to obtain a solution.

The compositional approach is important for reasoning about large and complex systems. In this work, we address synchronous systems with hierarchical structures, which are often used to model cyber-physical systems. We revisit the theory of reactive modules and reformulate it based on hypergraphs to clarify the parallel composition and the hierarchical description of modules. Then, we propose an automatic verification method for hierarchical systems. Given a system description annotated with assume-guarantee contracts, the proposed method divides the system into modules and verifies them separately to show that the top-level system satisfies its contract. Our method allows an input to be a circular system in which submodules mutually depend on each other. Experimental result shows our method can be effectively implemented using an SMT-based model checker.

This paper introduces a first-order method for solving optimal powered descent guidance (PDG) problems, that directly handles the nonconvex constraints associated with the maximum and minimum thrust bounds with varying mass and the pointing angle constraints on thrust vectors. This issue has been conventionally circumvented via lossless convexification (LCvx), which lifts a nonconvex feasible set to a higher-dimensional convex set, and via linear approximation of another nonconvex feasible set defined by exponential functions. However, this approach sometimes results in an infeasible solution when the solution obtained from the higher-dimensional space is projected back to the original space, especially when the problem involves a nonoptimal time of flight. Additionally, the Taylor series approximation introduces an approximation error that grows with both flight time and deviation from the reference trajectory. In this paper, we introduce a first-order approach that makes use of orthogonal projections onto nonconvex sets, allowing expansive projection (ExProj). We show that 1) this approach produces a feasible solution with better performance even for the nonoptimal time of flight cases for which conventional techniques fail to generate achievable trajectories and 2) the proposed method compensates for the linearization error that arises from Taylor series approximation, thus generating a superior guidance solution with less fuel consumption. We provide numerical examples featuring quantitative assessments to elucidate the effectiveness of the proposed methodology, particularly in terms of fuel consumption and flight time. Our analysis substantiates the assertion that the proposed approach affords enhanced flexibility in devising viable trajectories for a diverse array of planetary soft landing scenarios.

In this work, we consider the problem of localizing multiple signal sources based on time-difference of arrival (TDOA) measurements. In the blind setting, in which the source signals are not known, the localization task is challenging due to the data association problem. That is, it is not known which of the TDOA measurements correspond to the same source. Herein, we propose to perform joint localization and data association by means of an optimal transport formulation. The method operates by finding optimal groupings of TDOA measurements and associating these with candidate source locations. To allow for computationally feasible localization in three-dimensional space, an efficient set of candidate locations is constructed using a minimal multilateration solver based on minimal sets of receiver pairs. In numerical simulations, we demonstrate that the proposed method is robust both to measurement noise and TDOA detection errors. Furthermore, it is shown that the data association provided by the proposed method allows for statistically efficient estimates of the source locations.

In this paper, an Ultra-Wideband (UWB) positioning system is introduced, that leverages six identical custom-designed boards, each featuring an ESP32 microcontroller and a DWM3000 module from Quorvo. The system is capable of achieving localization with an accuracy of up to 10 cm, by utilizing Two-Way-Ranging (TWR) measurements between one designated tag and five anchor devices. The gathered distance measurements are subsequently processed by an Extended Kalman Filter (EKF) running locally on the tag board, enabling it to determine its own position, relying on fixed, a priori known positions of the anchor boards. This paper presents a comprehensive overview of the systems architecture, the key components, and the capabilities it offers for indoor positioning and tracking applications.

3D coverage path planning for UAVs is a crucial problem in diverse practical applications. However, existing methods have shown unsatisfactory system simplicity, computation efficiency, and path quality in large and complex scenes. To address these challenges, we propose FC-Planner, a skeleton-guided planning framework that can achieve fast aerial coverage of complex 3D scenes without pre-processing. We decompose the scene into several simple subspaces by a skeleton-based space decomposition (SSD). Additionally, the skeleton guides us to effortlessly determine free space. We utilize the skeleton to efficiently generate a minimal set of specialized and informative viewpoints for complete coverage. Based on SSD, a hierarchical planner effectively divides the large planning problem into independent sub-problems, enabling parallel planning for each subspace. The carefully designed global and local planning strategies are then incorporated to guarantee both high quality and efficiency in path generation. We conduct extensive benchmark and real-world tests, where FC-Planner computes over 10 times faster compared to state-of-the-art methods with shorter path and more complete coverage. The source code will be made publicly available to benefit the community. Project page: //hkust-aerial-robotics.github.io/FC-Planner.

To evaluate how developers perform differently in solving programming tasks, i.e., which actions and behaviours are more beneficial to them than others and if there are any specific strategies and behaviours that may indicate good versus poor understanding of the task and program given to them, we used the MIMESIS plug-in to record developers' interactions with the IDE. In a series of three studies we investigated the specific behaviour of developers solving a specific programming task. We focused on which source code files they visited, how they related pieces of code and knowledge to others and when and how successful they performed code edits. To cope with the variety of behaviours due to interpersonal differences such as different level of knowledge, development style or problem solving stratiegies, we used an abstraction of the observed behaviour, which enables for a better comparison between different individual attributes such as skill, speed and used stratiegies and also facilitates later automatic evaluation of behaviours, i.e. by using a software to react to.

北京阿比特科技有限公司