亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a multirate iterative scheme with multiphysics finite element method for a fluid-saturated poroelasticity model. Firstly, we reformulate the original model into a fluid coupled problem to apply the multiphysics finite element method for the discretization of the space variables, and we design a multirate iterative scheme on the time scale which solve a generalized Stokes problem in the coarse time size and solve the diffusion problem in the finer time size according to the characteristics of the poroelasticity problem. Secondly, we prove that the multirate iterative scheme is stable and the numerical solution satisfies some energy conservation laws, which are important to ensure the uniqueness of solution to the decoupled computing problem. Also, we analyze the error estimates to prove that the proposed numerical method doesn't reduce the precision of numerical solution and greatly reduces the computational cost. Finally, we give the numerical tests to verify the theoretical results and draw a conclusion to summary the main results in this paper.

相關內容

Rapid convergence of the shifted QR algorithm on symmetric matrices was shown more than fifty years ago. Since then, despite significant interest and its practical relevance, an understanding of the dynamics of the shifted QR algorithm on nonsymmetric matrices has remained elusive. We give a family of shifting strategies for the Hessenberg shifted QR algorithm with provably rapid global convergence on nonsymmetric matrices of bounded nonnormality, quantified in terms of the condition number of the eigenvector matrix. The convergence is linear with a constant rate, and for a well-chosen strategy from this family, the computational cost of each QR step scales nearly logarithmically in the eigenvector condition number. We perform our analysis in exact arithmetic. In the companion paper [Global Convergence of Hessenberg Shifted QR II: Numerical Stability and Deflation], we show that our shifting strategies can be implemented efficiently in finite arithmetic.

A quasi-second order scheme is developed to obtain approximate solutions of the shallow water equationswith bathymetry. The scheme is based on a staggered finite volume scheme for the space discretization:the scalar unknowns are located in the discretisation cells while the vector unknowns are located on theedges (in 2D) or faces (in 3D) of the mesh. A MUSCL-like interpolation for the discrete convectionoperators in the water height and momentum equations is performed in order to improve the precisionof the scheme. The time discretization is performed either by a first order segregated forward Eulerscheme in time or by the second order Heun scheme. Both schemes are shown to preserve the waterheight positivity under a CFL condition and an important state equilibrium known as the lake at rest.Using some recent Lax-Wendroff type results for staggered grids, these schemes are shown to be Lax-consistent with the weak formulation of the continuous equations; besides, the forward Euler schemeis shown to be consistent with a weak entropy inequality. Numerical results confirm the efficiency andaccuracy of the schemes.

The exponential fitting technique uses information on the expected behaviour of the solution of a differential problem to define accurate and efficient numerical methods. In particular, exponentially fitted methods are very effective when applied to problems with oscillatory solutions. In this cases, compared to standard methods, they have proved to be very accurate even using large integration steps. In this paper we consider exponentially fitted Runge-Kutta methods and we give characterizations of those that preserve local conservation laws of linear and quadratic quantities. As benchmark problems we consider wave equations arising as models in several fields such as fluid dynamics and quantum physics, and derive exponentially fitted methods that preserve their conservation laws of mass (or charge) and momentum. The proposed methods are applied to approximate breather wave solutions and are compared to other known methods of the same order.

In this paper we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBVPHBC) via a lifting of inhomogeneous Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. The IBVPHBC is discretized in time via the deferred correction method for the implicit midpoint rule and leads to a time-stepping scheme of order $2p+2$ of accuracy at the stage $p=0,1,2,\cdots $ of the correction. Each semi-discretized scheme results in a nonlinear elliptic equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The elliptic equation corresponding to the stage $p$ of the correction is discretized by the Galerkin finite element method and gives a full discretization of the IBVPHBC. This fully discretized scheme is unconditionally stable with order $2p+2$ of accuracy in time. The order of accuracy in space is equal to the degree of the finite element used when the family of meshes considered is shape-regular while an increment of one order is proven for quasi-uniform family of meshes. Numerical tests with a bistable reaction-diffusion equation having a strong stiffness ratio and a linear reaction-diffusion equation addressing order reduction are performed and demonstrate the unconditional convergence of the method. The orders 2,4,6,8 and 10 of accuracy in time are achieved.

The design of heat exchanger fields is a key phase to ensure the long-term sustainability of such renewable energy systems. This task has to be accomplished by modelling the relevant processes in the complex system made up of different exchangers, where the heat transfer must be considered within exchangers and outside exchangers. We propose a mathematical model for the study of the heat conduction into the soil as consequence of the presence of exchangers. Such a problem is formulated and solved with an analytical approach. On the basis of such analytical solution, we propose an optimisation procedure to compute the best position of the exchangers by minimising the adverse effects of neighbouring devices. Some numerical experiments are used to show the effectiveness of the proposed method also by taking into account a reference approximation procedure of the problem based on a finite difference method.

Efficient and robust iterative solvers for strong anisotropic elliptic equations are very challenging. In this paper a block preconditioning method is introduced to solve the linear algebraic systems of a class of micro-macro asymptotic-preserving (MMAP) scheme. MMAP method was developed by Degond {\it et al.} in 2012 where the discrete matrix has a $2\times2$ block structure. By the approximate Schur complement a series of block preconditioners are constructed. We first analyze a natural approximate Schur complement that is the coefficient matrix of the original non-AP discretization. However it tends to be singular for very small anisotropic parameters. We then improve it by using more suitable approximation for boundary rows of the exact Schur complement. With these block preconditioners, preconditioned GMRES iterative method is developed to solve the discrete equations. Several numerical tests show that block preconditioning methods can be a robust strategy with respect to grid refinement and the anisotropic strengths.

Regula Falsi, or the method of false position, is a numerical method for finding an approximate solution to f(x) = 0 on a finite interval [a, b], where f is a real-valued continuous function on [a, b] and satisfies f(a)f(b) < 0. Previous studies proved the convergence of this method under certain assumptions about the function f, such as both the first and second derivatives of f do not change the sign on the interval [a, b]. In this paper, we remove those assumptions and prove the convergence of the method for all continuous functions.

Existing results for low-rank matrix recovery largely focus on quadratic loss, which enjoys favorable properties such as restricted strong convexity/smoothness (RSC/RSM) and well conditioning over all low rank matrices. However, many interesting problems involve more general, non-quadratic losses, which do not satisfy such properties. For these problems, standard nonconvex approaches such as rank-constrained projected gradient descent (a.k.a. iterative hard thresholding) and Burer-Monteiro factorization could have poor empirical performance, and there is no satisfactory theory guaranteeing global and fast convergence for these algorithms. In this paper, we show that a critical component in provable low-rank recovery with non-quadratic loss is a regularity projection oracle. This oracle restricts iterates to low-rank matrices within an appropriate bounded set, over which the loss function is well behaved and satisfies a set of approximate RSC/RSM conditions. Accordingly, we analyze an (averaged) projected gradient method equipped with such an oracle, and prove that it converges globally and linearly. Our results apply to a wide range of non-quadratic low-rank estimation problems including one bit matrix sensing/completion, individualized rank aggregation, and more broadly generalized linear models with rank constraints.

A computationally efficient high-order solver is developed to compute the wall distances, which are typically used for turbulence modelling, peripheral flow simulations, Computer Aided Design (CAD) etc. The wall distances are computed by solving the differential equations namely: Eikonal, Hamilton-Jacobi (H-J) and Poisson. The computational benefit of using high-order schemes (explicit/compact schemes) for wall-distance solvers, both in terms of accuracy and computational time, has been demonstrated. A new H-J formulation based on the localized artificial diffusivity (LAD) approach has been proposed, which has produced results with an accuracy comparable to that of the Eikonal formulation. When compared to the baseline H-J solver using upwind schemes, the solution accuracy has improved by an order of magnitude and the calculations are $\approx$ 5 times faster using the modified H-J formulation. A modified curvature correction has also been implemented into the H-J solver to account for the near-wall errors due to concave/convex wall curvatures. The performance of the solver using different schemes has been tested both on the steady canonical test cases and the unsteady test cases like `piston-cylinder arrangement', `bouncing cube' and `burning of a star grain propellant' where the wall-distance evolves with time.

Generative adversarial nets (GANs) have generated a lot of excitement. Despite their popularity, they exhibit a number of well-documented issues in practice, which apparently contradict theoretical guarantees. A number of enlightening papers have pointed out that these issues arise from unjustified assumptions that are commonly made, but the message seems to have been lost amid the optimism of recent years. We believe the identified problems deserve more attention, and highlight the implications on both the properties of GANs and the trajectory of research on probabilistic models. We recently proposed an alternative method that sidesteps these problems.

北京阿比特科技有限公司