This paper presents a novel design for a compact, lightweight 6-axis force/torque sensor intended for use in legged robots. The design promotes easy manufacturing and cost reduction, while introducing innovative calibration methods that simplify the calibration process and minimize effort. The sensor's advantages are achieved by streamlining the structure for durability, implementing noncontact sensors, and providing a wider sensing range compared to commercial sensors. To maintain a simple structure, the paper proposes a force sensing scheme using photocouplers where the sensing elements are aligned in-plane. This strategy enables all sensing elements to be fabricated on a single printed circuit board, eliminating manual labor tasks such as bonding and coating the sensing elements. The prototype sensor contains only four parts, costs less than $250, and exhibits high response frequency and performance. Traditional calibration methods present challenges, such as the need for specialized equipment and extensive labor. To facilitate easy calibration without the need for specialized equipment, a new method using optimal control is proposed. To verify the feasibility of these ideas, a prototype six-axis F/T sensor was manufactured. Its performance was evaluated and compared to a reference F/T sensor and previous calibration methods.
Recent instruction fine-tuned models can solve multiple NLP tasks when prompted to do so, with machine translation (MT) being a prominent use case. However, current research often focuses on standard performance benchmarks, leaving compelling fairness and ethical considerations behind. In MT, this might lead to misgendered translations, resulting, among other harms, in the perpetuation of stereotypes and prejudices. In this work, we address this gap by investigating whether and to what extent such models exhibit gender bias in machine translation and how we can mitigate it. Concretely, we compute established gender bias metrics on the WinoMT corpus from English to German and Spanish. We discover that IFT models default to male-inflected translations, even disregarding female occupational stereotypes. Next, using interpretability methods, we unveil that models systematically overlook the pronoun indicating the gender of a target occupation in misgendered translations. Finally, based on this finding, we propose an easy-to-implement and effective bias mitigation solution based on few-shot learning that leads to significantly fairer translations.
Predicting turn-taking in multiparty conversations has many practical applications in human-computer/robot interaction. However, the complexity of human communication makes it a challenging task. Recent advances have shown that synchronous multi-perspective egocentric data can significantly improve turn-taking prediction compared to asynchronous, single-perspective transcriptions. Building on this research, we propose a new multimodal transformer-based architecture for predicting turn-taking in embodied, synchronized multi-perspective data. Our experimental results on the recently introduced EgoCom dataset show a substantial performance improvement of up to 14.01% on average compared to existing baselines and alternative transformer-based approaches. The source code, and the pre-trained models of our 3T-Transformer will be available upon acceptance.
Robotic crop phenotyping has emerged as a key technology to assess crops' morphological and physiological traits at scale. These phenotypical measurements are essential for developing new crop varieties with the aim of increasing productivity and dealing with environmental challenges such as climate change. However, developing and deploying crop phenotyping robots face many challenges such as complex and variable crop shapes that complicate robotic object detection, dynamic and unstructured environments that baffle robotic control, and real-time computing and managing big data that challenge robotic hardware/software. This work specifically tackles the first challenge by proposing a novel Digital-Twin(DT)MARS-CycleGAN model for image augmentation to improve our Modular Agricultural Robotic System (MARS)'s crop object detection from complex and variable backgrounds. Our core idea is that in addition to the cycle consistency losses in the CycleGAN model, we designed and enforced a new DT-MARS loss in the deep learning model to penalize the inconsistency between real crop images captured by MARS and synthesized images sensed by DT MARS. Therefore, the generated synthesized crop images closely mimic real images in terms of realism, and they are employed to fine-tune object detectors such as YOLOv8. Extensive experiments demonstrated that our new DT/MARS-CycleGAN framework significantly boosts our MARS' crop object/row detector's performance, contributing to the field of robotic crop phenotyping.
Fault diagnosis of rotating machinery plays a important role for the safety and stability of modern industrial systems. However, there is a distribution discrepancy between training data and data of real-world operation scenarios, which causing the decrease of performance of existing systems. This paper proposed a transfer learning based method utilizing acoustic and vibration signal to address this distribution discrepancy. We designed the acoustic and vibration feature fusion MAVgram to offer richer and more reliable information of faults, coordinating with a DNN-based classifier to obtain more effective diagnosis representation. The backbone was pre-trained and then fine-tuned to obtained excellent performance of the target task. Experimental results demonstrate the effectiveness of the proposed method, and achieved improved performance compared to STgram-MFN.
This paper presents a reconfigurable intelligent sensing surface (RISS) that combines passive and active elements to achieve simultaneous reflection and direction of arrival (DOA) estimation tasks. By utilizing DOA information from the RISS instead of conventional channel estimation, the pilot overhead is reduced and the RISS becomes independent of the hybrid access point (HAP), enabling efficient operation. Specifically, the RISS autonomously estimates the DOA of uplink signals from single-antenna users and reflects them using the HAP's slowly varying DOA information. During downlink transmission, it updates the HAP's DOA information and designs the reflection phase of energy signals based on the latest user DOA information. The paper includes a comprehensive performance analysis, covering system design, protocol details, receiving performance, and RISS deployment suggestions. We derive a closed-form expression to analyze system performance under DOA errors, and calculate the statistical distribution of user received energy using the moment-matching technique. We provide a recommended transmit power to meet a specified outage probability and energy threshold. Numerical results demonstrate that the proposed system outperforms the conventional counterpart by 2.3 dB and 4.7 dB for Rician factors $\kappa_h=\kappa_G=1$ and $\kappa_h=\kappa_G=10$, respectively.
This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques. We mainly highlighted object detection by three different trending strategies, i.e., 1) domain adaptive deep learning-based approaches (discrepancy-based, Adversarial-based, Reconstruction-based, Hybrid). We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis. In part 2) we mainly focused on tiny object detection techniques (multi-scale feature learning, Data augmentation, Training strategy (TS), Context-based detection, GAN-based detection). In part 3), To obtain knowledge-able findings, we discussed different object detection methods, i.e., convolutions and convolutional neural networks (CNN), pooling operations with trending types. Furthermore, we explained results with the help of some object detection algorithms, i.e., R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, which are generally considered the base bone of CV, CNN, and OD. We performed comparative analysis on different datasets such as MS-COCO, PASCAL VOC07,12, and ImageNet to analyze results and present findings. At the end, we showed future directions with existing challenges of the field. In the future, OD methods and models can be analyzed for real-time object detection, tracking strategies.
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.