Model selection aims to identify a sufficiently well performing model that is possibly simpler than the most complex model among a pool of candidates. However, the decision-making process itself can inadvertently introduce non-negligible bias when the cross-validation estimates of predictive performance are marred by excessive noise. In finite data regimes, cross-validated estimates can encourage the statistician to select one model over another when it is not actually better for future data. While this bias remains negligible in the case of few models, when the pool of candidates grows, and model selection decisions are compounded (as in forward search), the expected magnitude of selection-induced bias is likely to grow too. This paper introduces an efficient approach to estimate and correct selection-induced bias based on order statistics. Numerical experiments demonstrate the reliability of our approach in estimating both selection-induced bias and over-fitting along compounded model selection decisions, with specific application to forward search. This work represents a light-weight alternative to more computationally expensive approaches to correcting selection-induced bias, such as nested cross-validation and the bootstrap. Our approach rests on several theoretic assumptions, and we provide a diagnostic to help understand when these may not be valid and when to fall back on safer, albeit more computationally expensive approaches. The accompanying code facilitates its practical implementation and fosters further exploration in this area.
The problem of designing learners that provide guarantees that their predictions are provably correct is of increasing importance in machine learning. However, learning theoretic guarantees have only been considered in very specific settings. In this work, we consider the design and analysis of reliable learners in challenging test-time environments as encountered in modern machine learning problems: namely `adversarial' test-time attacks (in several variations) and `natural' distribution shifts. In this work, we provide a reliable learner with provably optimal guarantees in such settings. We discuss computationally feasible implementations of the learner and further show that our algorithm achieves strong positive performance guarantees on several natural examples: for example, linear separators under log-concave distributions or smooth boundary classifiers under smooth probability distributions.
Computer model calibration involves using partial and imperfect observations of the real world to learn which values of a model's input parameters lead to outputs that are consistent with real-world observations. When calibrating models with high-dimensional output (e.g. a spatial field), it is common to represent the output as a linear combination of a small set of basis vectors. Often, when trying to calibrate to such output, what is important to the credibility of the model is that key emergent physical phenomena are represented, even if not faithfully or in the right place. In these cases, comparison of model output and data in a linear subspace is inappropriate and will usually lead to poor model calibration. To overcome this, we present kernel-based history matching (KHM), generalising the meaning of the technique sufficiently to be able to project model outputs and observations into a higher-dimensional feature space, where patterns can be compared without their location necessarily being fixed. We develop the technical methodology, present an expert-driven kernel selection algorithm, and then apply the techniques to the calibration of boundary layer clouds for the French climate model IPSL-CM.
Linear regression models have been extensively considered in the literature. However, in some practical applications they may not be appropriate all over the range of the covariate. In this paper, a more flexible model is introduced by considering a regression model $Y=r(X)+\varepsilon$ where the regression function $r(\cdot)$ is assumed to be linear for large values in the domain of the predictor variable $X$. More precisely, we assume that $r(x)=\alpha_0+\beta_0 x$ for $x> u_0$, where the value $u_0$ is identified as the smallest value satisfying such a property. A penalized procedure is introduced to estimate the threshold $u_0$. The considered proposal focusses on a semiparametric approach since no parametric model is assumed for the regression function for values smaller than $u_0$. Consistency properties of both the threshold estimator and the estimators of $(\alpha_0,\beta_0)$ are derived, under mild assumptions. Through a numerical study, the small sample properties of the proposed procedure and the importance of introducing a penalization are investigated. The analysis of a real data set allows us to demonstrate the usefulness of the penalized estimators.
Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.
In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a desired error tolerance with some notion of confidence. Existing design methods, however, do not jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses both goals. A multi-level reproducing kernel Hilbert space (RKHS) interpolator is first introduced to build the emulator, under which our stacking design provides a sequential approach for designing multi-fidelity runs such that a desired prediction error of $\epsilon > 0$ is met under regularity assumptions. We then prove a novel cost complexity theorem that, under this multi-level interpolator, establishes a bound on the computation cost (for training data simulation) needed to achieve a prediction bound of $\epsilon$. This result provides novel insights on conditions under which the proposed multi-fidelity approach improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally, we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an application to finite element analysis.
We derive upper bounds for random design linear regression with dependent ($\beta$-mixing) data absent any realizability assumptions. In contrast to the strictly realizable martingale noise regime, no sharp instance-optimal non-asymptotics are available in the literature. Up to constant factors, our analysis correctly recovers the variance term predicted by the Central Limit Theorem -- the noise level of the problem -- and thus exhibits graceful degradation as we introduce misspecification. Past a burn-in, our result is sharp in the moderate deviations regime, and in particular does not inflate the leading order term by mixing time factors.
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
Recent advances in artificial intelligence (AI), especially in generative language modelling, hold the promise of transforming government. Given the advanced capabilities of new AI systems, it is critical that these are embedded using standard operational procedures, clear epistemic criteria, and behave in alignment with the normative expectations of society. Scholars in multiple domains have subsequently begun to conceptualize the different forms that AI applications may take, highlighting both their potential benefits and pitfalls. However, the literature remains fragmented, with researchers in social science disciplines like public administration and political science, and the fast-moving fields of AI, ML, and robotics, all developing concepts in relative isolation. Although there are calls to formalize the emerging study of AI in government, a balanced account that captures the full depth of theoretical perspectives needed to understand the consequences of embedding AI into a public sector context is lacking. Here, we unify efforts across social and technical disciplines by first conducting an integrative literature review to identify and cluster 69 key terms that frequently co-occur in the multidisciplinary study of AI. We then build on the results of this bibliometric analysis to propose three new multifaceted concepts for understanding and analysing AI-based systems for government (AI-GOV) in a more unified way: (1) operational fitness, (2) epistemic alignment, and (3) normative divergence. Finally, we put these concepts to work by using them as dimensions in a conceptual typology of AI-GOV and connecting each with emerging AI technical measurement standards to encourage operationalization, foster cross-disciplinary dialogue, and stimulate debate among those aiming to rethink government with AI.