Channel reciprocity greatly facilitates downlink precoding in time-division duplexing (TDD) multiple-input multiple-output (MIMO) communications without the need for channel state information (CSI) feedback. Recently, reconfigurable intelligent surfaces (RISs) emerge as a promising technology to enhance the performance of future wireless networks. However, since the artificial electromagnetic characteristics of RISs do not strictly follow the normal laws of nature, it brings up a question: does the channel reciprocity hold in RIS-assisted TDD wireless networks? After briefly reviewing the reciprocity theorem, in this article, we show that there still exists channel reciprocity for RIS-assisted wireless networks satisfying certain conditions. We also experimentally demonstrate the reciprocity at the sub-6 GHz and the millimeter-wave frequency bands by using two fabricated RISs. Furthermore, we introduce several RIS-assisted approaches to realizing nonreciprocal channels. Finally, potential opportunities brought by reciprocal/nonreciprocal RISs and future research directions are outlined.
The emergence of Intelligent Connected Vehicles (ICVs) shows great potential for future intelligent traffic systems, enhancing both traffic safety and road efficiency. However, the ICVs relying on data driven perception and driving models face many challenges, including the lack of comprehensive knowledge to deal with complicated driving context. In this paper, we are motivated to investigate cooperative knowledge sharing for ICVs. We propose a secure and efficient directed acyclic graph (DAG) blockchain based knowledge sharing framework, aiming to cater for the micro-transaction based vehicular networks. The framework can realize both local and cross-regional knowledge sharing. Then, the framework is applied to autonomous driving applications, wherein machine learning based models for autonomous driving control can be shared. A lightweight tip selection algorithm (TSA) is proposed for the DAG based knowledge sharing framework to achieve consensus and identity verification for cross-regional vehicles. To enhance model accuracy as well as minimizing bandwidth consumption, an adaptive asynchronous distributed learning (ADL) based scheme is proposed for model uploading and downloading. Experiment results show that the blockchain based knowledge sharing is secure, and it can resist attacks from malicious users. In addition, the proposed adaptive ADL scheme can enhance driving safety related performance compared to several existing algorithms.
The existing relay-assisted terahertz (THz) wireless system is limited to dual-hop transmission with pointing errors and short-term fading without considering the shadowing effect. This paper analyzes the performance of a multihop-assisted backhaul communication mixed with an access link under the shadowed fading with antenna misalignment errors. We derive statistical results of the signal-to-noise ratio (SNR) of the multihop link by considering independent but not identically distributed (i.ni.d) $\alpha$-$\mu$ fading channel with pointing errors employing channel-assisted (CA) and fixed-gain (FG) amplify-and-forward (AF) relaying for each hop. We analyze the outage probability, average BER, and ergodic capacity performance of the mixed system considering the generalized-$K$ shadowed fading model with AF and decode-and-forward (DF) protocols employed for the access link. We derive exact expressions of the performance metrics for the CA-multihop system with the DF relaying for the last hop and upper bound of the performance for the FG-multihop system using FG and DF relaying at the last relay. We also develop asymptotic analysis in the high SNR to derive the diversity order of the system and use computer simulations to provide design and deployment aspects of multiple relays in the backhaul link to extend the communication range for THz wireless transmissions.
We investigate a multi-pair two-way decode-andforward relaying aided massive multiple-input multiple-output antenna system under Rician fading channels, in which multiple pairs of users exchange information through a relay station having multiple antennas. Imperfect channel state information is considered in the context of maximum-ratio processing. Closedform expressions are derived for approximating the sum spectral efficiency (SE) of the system. Moreover, we obtain the powerscaling laws at the users and the relay station to satisfy a certain SE requirement in three typical scenarios. Finally, simulations validate the accuracy of the derived results.
In this paper, we investigate the problem of pilot optimization and channel estimation of two-way relaying network (TWRN) aided by an intelligent reflecting surface (IRS) with finite discrete phase shifters. In a TWRN, there exists a challenging problem that the two cascading channels from source-to-IRS-to-Relay and destination-to-IRS-to-relay interfere with each other. Via designing the initial phase shifts of IRS and pilot pattern, the two cascading channels are separated by using simple arithmetic operations like addition and subtraction. Then, the least-squares estimator is adopted to estimate the two cascading channels and two direct channels from source to relay and destination to relay. The corresponding mean square errors (MSE) of channel estimators are derived. By minimizing MSE, the optimal phase shift matrix of IRS is proved. Then, two special matrices Hadamard and discrete Fourier transform (DFT) matrix is shown to be two optimal training matrices for IRS. Furthermore, the IRS with discrete finite phase shifters is taken into account. Using theoretical derivation and numerical simulations, we find that 3-4 bits phase shifters are sufficient for IRS to achieve a negligible MSE performance loss. More importantly, the Hadamard matrix requires only one-bit phase shifters to achieve the optimal MSE performance while the DFT matrix requires at least three or four bits to achieve the same performance. Thus, the Hadamard matrix is a perfect choice for channel estimation using low-resolution phase-shifting IRS.
In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless relaying system, where a decode-and-forward relay (R) is employed to forward data from a source (S) to a destination (D), aided by M passive reflecting elements. We consider two practical IRS deployment strategies, namely, single-IRS deployment where all reflecting elements are mounted on one single IRS that is deployed near S, R, or D, and multi-IRS deployment where the reflecting elements are allocated over three separate IRSs which are deployed near S, R, and D, respectively. Under the line-of-sight (LoS) channel model, we characterize the capacity scaling orders with respect to an increasing M for the IRS-aided relay system with different IRS deployment strategies. For single-IRS deployment, we show that deploying the IRS near R achieves the highest capacity as compared to that near S or D. While for multi-IRS deployment, we propose a practical cooperative IRS passive beamforming design which is analytically shown to achieve a larger capacity scaling order than the single-IRS deployment (i.e., near R or S/D) when M is sufficiently large. Numerical examples are provided, which validate our theoretical results.
Dynamical systems are no strangers in wireless communications. Our story will necessarily involve chaos, but not in the terms secure chaotic communications have introduced it: we will look for the chaos, complexity and dynamics that already exist in everyday wireless communications. We present a short overview of dynamical systems and chaos before focusing on the applications of dynamical systems theory to wireless communications in the past 30 years, ranging from the modeling on the physical layer to different kinds of self-similar traffic encountered all the way up to the network layer. The examples of past research and its implications are grouped and mapped onto the media layers of ISO OSI model to show just how ubiquitous dynamical systems theory can be and to trace the paths that may be taken now. When considering the future paths, we argue that the time has come for us to revive the interest in dynamical systems for wireless communications. It did not happen already because of the big question: can we afford observing systems of our interest as dynamical systems and what are the trade-offs? The answers to these questions are dynamical systems of its own: they change not only with the modeling context, but also with time. In the current moment the available resources allow such approach and the current demands ask for it. Reservoir computing, the major player in dynamical systems-related learning originated in wireless communications, and to wireless communications it should return.
Large-scale antenna arrays employed by the base station (BS) constitute an essential next-generation communications technique. However, due to the constraints of size, cost, and power consumption, it is usually considered unrealistic to use a large-scale antenna array at the user side. Inspired by the emerging technique of reconfigurable intelligent surfaces (RIS), we firstly propose the concept of user-side RIS (US-RIS) for facilitating the employment of a large-scale antenna array at the user side in a cost- and energy-efficient way. In contrast to the existing employments of RIS, which belong to the family of base-station-side RISs (BSS-RISs), the US-RIS concept by definition facilitates the employment of RIS at the user side for the first time. This is achieved by conceiving a multi-layer structure to realize a compact form-factor. Furthermore, our theoretical results demonstrate that, in contrast to the existing single-layer structure, where only the phase of the signal reflected from RIS can be adjusted, the amplitude of the signal penetrating multi-layer US-RIS can also be partially controlled, which brings about a new degree of freedom (DoF) for beamformer design that can be beneficially exploited for performance enhancement. In addition, based on the proposed multi-layer US-RIS, we formulate the signal-to-noise ratio (SNR) maximization problem of US-RIS-aided communications. Due to the non-convexity of the problem introduced by this multi-layer structure, we propose a multi-layer transmit beamformer design relying on an iterative algorithm for finding the optimal solution by alternately updating each variable. Finally, our simulation results verify the superiority of the proposed multi-layer US-RIS as a compact realization of a large-scale antenna array at the user side for uplink transmission.
Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a "store-carry and forward" fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts - required to implement the proposed detection strategy - are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.
Unmanned Aerial Vehicles are increasingly being used in surveillance and traffic monitoring thanks to their high mobility and ability to cover areas at different altitudes and locations. One of the major challenges is to use aerial images to accurately detect cars and count them in real-time for traffic monitoring purposes. Several deep learning techniques were recently proposed based on convolution neural network (CNN) for real-time classification and recognition in computer vision. However, their performance depends on the scenarios where they are used. In this paper, we investigate the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN and YOLOv3, in the context of car detection from aerial images. We trained and tested these two models on a large car dataset taken from UAVs. We demonstrated in this paper that YOLOv3 outperforms Faster R-CNN in sensitivity and processing time, although they are comparable in the precision metric.
Various 3D reconstruction methods have enabled civil engineers to detect damage on a road surface. To achieve the millimetre accuracy required for road condition assessment, a disparity map with subpixel resolution needs to be used. However, none of the existing stereo matching algorithms are specially suitable for the reconstruction of the road surface. Hence in this paper, we propose a novel dense subpixel disparity estimation algorithm with high computational efficiency and robustness. This is achieved by first transforming the perspective view of the target frame into the reference view, which not only increases the accuracy of the block matching for the road surface but also improves the processing speed. The disparities are then estimated iteratively using our previously published algorithm where the search range is propagated from three estimated neighbouring disparities. Since the search range is obtained from the previous iteration, errors may occur when the propagated search range is not sufficient. Therefore, a correlation maxima verification is performed to rectify this issue, and the subpixel resolution is achieved by conducting a parabola interpolation enhancement. Furthermore, a novel disparity global refinement approach developed from the Markov Random Fields and Fast Bilateral Stereo is introduced to further improve the accuracy of the estimated disparity map, where disparities are updated iteratively by minimising the energy function that is related to their interpolated correlation polynomials. The algorithm is implemented in C language with a near real-time performance. The experimental results illustrate that the absolute error of the reconstruction varies from 0.1 mm to 3 mm.