亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Security critical software, e.g., OpenSSL, comes with numerous side-channel leakages left unpatched due to a lack of resources or experts. The situation will only worsen as the pace of code development accelerates, with developers relying on Large Language Models (LLMs) to automatically generate code. In this work, we explore the use of LLMs in generating patches for vulnerable code with microarchitectural side-channel leakages. For this, we investigate the generative abilities of powerful LLMs by carefully crafting prompts following a zero-shot learning approach. All generated code is dynamically analyzed by leakage detection tools, which are capable of pinpointing information leakage at the instruction level leaked either from secret dependent accesses or branches or vulnerable Spectre gadgets, respectively. Carefully crafted prompts are used to generate candidate replacements for vulnerable code, which are then analyzed for correctness and for leakage resilience. From a cost/performance perspective, the GPT4-based configuration costs in API calls a mere few cents per vulnerability fixed. Our results show that LLM-based patching is far more cost-effective and thus provides a scalable solution. Finally, the framework we propose will improve in time, especially as vulnerability detection tools and LLMs mature.

相關內容

We propose a time series forecasting method named Quantum Gramian Angular Field (QGAF). This approach merges the advantages of quantum computing technology with deep learning, aiming to enhance the precision of time series classification and forecasting. We successfully transformed stock return time series data into two-dimensional images suitable for Convolutional Neural Network (CNN) training by designing specific quantum circuits. Distinct from the classical Gramian Angular Field (GAF) approach, QGAF's uniqueness lies in eliminating the need for data normalization and inverse cosine calculations, simplifying the transformation process from time series data to two-dimensional images. To validate the effectiveness of this method, we conducted experiments on datasets from three major stock markets: the China A-share market, the Hong Kong stock market, and the US stock market. Experimental results revealed that compared to the classical GAF method, the QGAF approach significantly improved time series prediction accuracy, reducing prediction errors by an average of 25% for Mean Absolute Error (MAE) and 48% for Mean Squared Error (MSE). This research confirms the potential and promising prospects of integrating quantum computing with deep learning techniques in financial time series forecasting.

Automated landing for Unmanned Aerial Vehicles (UAVs), like multirotor drones, requires intricate software encompassing control algorithms, obstacle avoidance, and machine vision, especially when landing markers assist. Failed landings can lead to significant costs from damaged drones or payloads and the time spent seeking alternative landing solutions. Therefore, it's important to fully test auto-landing systems through simulations before deploying them in the real-world to ensure safety. This paper proposes RLaGA, a reinforcement learning (RL) augmented search-based testing framework, which constructs diverse and real marker-based landing cases that involve safety violations. Specifically, RLaGA introduces a genetic algorithm (GA) to conservatively search for diverse static environment configurations offline and RL to aggressively manipulate dynamic objects' trajectories online to find potential vulnerabilities in the target deployment environment. Quantitative results reveal that our method generates up to 22.19% more violation cases and nearly doubles the diversity of generated violation cases compared to baseline methods. Qualitatively, our method can discover those corner cases which would be missed by state-of-the-art algorithms. We demonstrate that select types of these corner cases can be confirmed via real-world testing with drones in the field.

This paper proposes Video-Teller, a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment to significantly enhance the video-to-text generation task. Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules. It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions. To effectively integrate visual and auditory information, Video-Teller builds upon the image-based BLIP-2 model and introduces a cascaded Q-Former which fuses information across frames and ASR texts. To better guide video summarization, we introduce a fine-grained modality alignment objective, where the cascaded Q-Former's output embedding is trained to align with the caption/summary embedding created by a pretrained text auto-encoder. Experimental results demonstrate the efficacy of our proposed video-language foundation model in accurately comprehending videos and generating coherent and precise language descriptions. It is worth noting that the fine-grained alignment enhances the model's capabilities (4% improvement of CIDEr score on MSR-VTT) with only 13% extra parameters in training and zero additional cost in inference.

We propose Textiverse, a big data approach for mining geotagged timestamped textual data on a map, such as for Twitter feeds, crime reports, or restaurant reviews. We use a scalable data management pipeline that extracts keyphrases from online databases in parallel. We speed up this time-consuming step so that it outpaces the content creation rate of popular social media. The result is presented in a web-based interface that integrates with Google Maps to visualize textual content of massive scale. The visual design is based on aggregating spatial regions into discrete sites and rendering each such site as a circular tag cloud. To demonstrate the intended use of our technique, we first show how it can be used to characterize the U.S.\ National Science Foundation funding status based on all 489,151 awards. We then apply the same technique on visually representing a more spatially scattered and linguistically informal dataset: 1.2 million Twitter posts about the Android mobile operating system.

As software projects rapidly evolve, software artifacts become more complex and defects behind get harder to identify. The emerging Transformer-based approaches, though achieving remarkable performance, struggle with long code sequences due to their self-attention mechanism, which scales quadratically with the sequence length. This paper introduces SparseCoder, an innovative approach incorporating sparse attention and learned token pruning (LTP) method (adapted from natural language processing) to address this limitation. Extensive experiments carried out on a large-scale dataset for vulnerability detection demonstrate the effectiveness and efficiency of SparseCoder, scaling from quadratically to linearly on long code sequence analysis in comparison to CodeBERT and RoBERTa. We further achieve 50% FLOPs reduction with a negligible performance drop of less than 1% comparing to Transformer leveraging sparse attention. Moverover, SparseCoder goes beyond making "black-box" decisions by elucidating the rationale behind those decisions. Code segments that contribute to the final decision can be highlighted with importance scores, offering an interpretable, transparent analysis tool for the software engineering landscape.

Question answering over RDF data like knowledge graphs has been greatly advanced, with a number of good systems providing crisp answers for natural language questions or telegraphic queries. Some of these systems incorporate textual sources as additional evidence for the answering process, but cannot compute answers that are present in text alone. Conversely, the IR and NLP communities have addressed QA over text, but such systems barely utilize semantic data and knowledge. This paper presents a method for complex questions that can seamlessly operate over a mixture of RDF datasets and text corpora, or individual sources, in a unified framework. Our method, called UNIQORN, builds a context graph on-the-fly, by retrieving question-relevant evidences from the RDF data and/or a text corpus, using fine-tuned BERT models. The resulting graph typically contains all question-relevant evidences but also a lot of noise. UNIQORN copes with this input by a graph algorithm for Group Steiner Trees, that identifies the best answer candidates in the context graph. Experimental results on several benchmarks of complex questions with multiple entities and relations, show that UNIQORN significantly outperforms state-of-the-art methods for heterogeneous QA -- in a full training mode, as well as in zero-shot settings. The graph-based methodology provides user-interpretable evidence for the complete answering process.

Automatic crash bucketing is a crucial phase in the software development process for efficiently triaging bug reports. It generally consists in grouping similar reports through clustering techniques. However, with real-time streaming bug collection, systems are needed to quickly answer the question: What are the most similar bugs to a new one?, that is, efficiently find near-duplicates. It is thus natural to consider nearest neighbors search to tackle this problem and especially the well-known locality-sensitive hashing (LSH) to deal with large datasets due to its sublinear performance and theoretical guarantees on the similarity search accuracy. Surprisingly, LSH has not been considered in the crash bucketing literature. It is indeed not trivial to derive hash functions that satisfy the so-called locality-sensitive property for the most advanced crash bucketing metrics. Consequently, we study in this paper how to leverage LSH for this task. To be able to consider the most relevant metrics used in the literature, we introduce DeepLSH, a Siamese DNN architecture with an original loss function, that perfectly approximates the locality-sensitivity property even for Jaccard and Cosine metrics for which exact LSH solutions exist. We support this claim with a series of experiments on an original dataset, which we make available.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司