Motivated by better modeling of intra-individual variability in longitudinal data, we propose a class of location-scale mixed effects models, in which the data of each individual is modeled by a parameter-varying generalized hyperbolic distribution. We first study the local maximum-likelihood asymptotics and reveal the instability in the numerical optimization of the log-likelihood. Then, we construct an asymptotically efficient estimator based on the Newton-Raphson method based on the original log-likelihood function with the initial estimator being naive least-squares-type. Numerical experiments are conducted to show that the proposed one-step estimator is not only theoretically efficient but also numerically much more stable and much less time-consuming compared with the maximum-likelihood estimator.
Gaussian copula mixture models (GCMM) are the generalization of Gaussian Mixture models using the concept of copula. Its mathematical definition is given and the properties of likelihood function are studied in this paper. Based on these properties, extended Expectation Maximum algorithms are developed for estimating parameters for the mixture of copulas while marginal distributions corresponding to each component is estimated using separate nonparametric statistical methods. In the experiment, GCMM can achieve better goodness-of-fitting given the same number of clusters as GMM; furthermore, GCMM can utilize unsynchronized data on each dimension to achieve deeper mining of data.
One of the most fundamental problems in network study is community detection. The stochastic block model (SBM) is a widely used model, for which various estimation methods have been developed with their community detection consistency results unveiled. However, the SBM is restricted by the strong assumption that all nodes in the same community are stochastically equivalent, which may not be suitable for practical applications. We introduce a pairwise covariates-adjusted stochastic block model (PCABM), a generalization of SBM that incorporates pairwise covariate information. We study the maximum likelihood estimates of the coefficients for the covariates as well as the community assignments. It is shown that both the coefficient estimates of the covariates and the community assignments are consistent under suitable sparsity conditions. Spectral clustering with adjustment (SCWA) is introduced to efficiently solve PCABM. Under certain conditions, we derive the error bound of community detection under SCWA and show that it is community detection consistent. In addition, we investigate model selection in terms of the number of communities and feature selection for the pairwise covariates, and propose two corresponding algorithms. PCABM compares favorably with the SBM or degree-corrected stochastic block model (DCBM) under a wide range of simulated and real networks when covariate information is accessible.
This paper studies the causal representation learning problem when the latent causal variables are observed indirectly through an unknown linear transformation. The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables. Sufficient conditions for DAG recovery are established, and it is shown that a large class of non-linear models in the latent space (e.g., causal mechanisms parameterized by two-layer neural networks) satisfy these conditions. These sufficient conditions ensure that the effect of an intervention can be detected correctly from changes in the score. Capitalizing on this property, recovering a valid transformation is facilitated by the following key property: any valid transformation renders latent variables' score function to necessarily have the minimal variations across different interventional environments. This property is leveraged for perfect recovery of the latent DAG structure using only \emph{soft} interventions. For the special case of stochastic \emph{hard} interventions, with an additional hypothesis testing step, one can also uniquely recover the linear transformation up to scaling and a valid causal ordering.
Since their introduction in Abadie and Gardeazabal (2003), Synthetic Control (SC) methods have quickly become one of the leading methods for estimating causal effects in observational studies in settings with panel data. Formal discussions often motivate SC methods by the assumption that the potential outcomes were generated by a factor model. Here we study SC methods from a design-based perspective, assuming a model for the selection of the treated unit(s) and period(s). We show that the standard SC estimator is generally biased under random assignment. We propose a Modified Unbiased Synthetic Control (MUSC) estimator that guarantees unbiasedness under random assignment and derive its exact, randomization-based, finite-sample variance. We also propose an unbiased estimator for this variance. We document in settings with real data that under random assignment, SC-type estimators can have root mean-squared errors that are substantially lower than that of other common estimators. We show that such an improvement is weakly guaranteed if the treated period is similar to the other periods, for example, if the treated period was randomly selected. While our results only directly apply in settings where treatment is assigned randomly, we believe that they can complement model-based approaches even for observational studies.
Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.
We introduce a generalized additive model for location, scale, and shape (GAMLSS) next of kin aiming at distribution-free and parsimonious regression modelling for arbitrary outcomes. We replace the strict parametric distribution formulating such a model by a transformation function, which in turn is estimated from data. Doing so not only makes the model distribution-free but also allows to limit the number of linear or smooth model terms to a pair of location-scale predictor functions. We derive the likelihood for continuous, discrete, and randomly censored observations, along with corresponding score functions. A plethora of existing algorithms is leveraged for model estimation, including constrained maximum-likelihood, the original GAMLSS algorithm, and transformation trees. Parameter interpretability in the resulting models is closely connected to model selection. We propose the application of a novel best subset selection procedure to achieve especially simple ways of interpretation. All techniques are motivated and illustrated by a collection of applications from different domains, including crossing and partial proportional hazards, complex count regression, non-linear ordinal regression, and growth curves. All analyses are reproducible with the help of the "tram" add-on package to the R system for statistical computing and graphics.
We study numerical integration over bounded regions in $\mathbb{R}^s, s\ge1$ with respect to some probability measure. We replace random sampling with quasi-Monte Carlo methods, where the underlying point set is derived from deterministic constructions that aim to fill the space more evenly than random points. Such quasi-Monte Carlo point sets are ordinarily designed for the uniform measure, and the theory only works for product measures when a coordinate-wise transformation is applied. Going beyond this setting, we first consider the case where the target density is a mixture distribution where each term in the mixture comes from a product distribution. Next we consider target densities which can be approximated with such mixture distributions. We require the approximation to be a sum of coordinate-wise products and the approximation to be positive everywhere (so that they can be re-scaled to probability density functions). We use tensor product hat function approximations for this purpose here, since a hat function approximation of a positive function is itself positive. We also study more complex algorithms, where we first approximate the target density with a general Gaussian mixture distribution and approximate the mixtures with an adaptive hat function approximation on rotated intervals. The Gaussian mixture approximation allows us to locate the essential parts of the target density, whereas the adaptive hat function approximation allows us to approximate the finer structure of the target density. We prove convergence rates for each of the integration techniques based on quasi-Monte Carlo sampling for integrands with bounded partial mixed derivatives. The employed algorithms are based on digital $(t,s)$-sequences over the finite field $\mathbb{F}_2$ and an inversion method. Numerical examples illustrate the performance of the algorithms for some target densities and integrands.
Unveiling feeder topologies from data is of paramount importance to advance situational awareness and proper utilization of smart resources in power distribution grids. This tutorial summarizes, contrasts, and establishes useful links between recent works on topology identification and detection schemes that have been proposed for power distribution grids. The primary focus is to highlight methods that overcome the limited availability of measurement devices in distribution grids, while enhancing topology estimates using conservation laws of power-flow physics and structural properties of feeders. Grid data from phasor measurement units or smart meters can be collected either passively in the traditional way, or actively, upon actuating grid resources and measuring the feeder's voltage response. Analytical claims on feeder identifiability and detectability are reviewed under disparate meter placement scenarios. Such topology learning claims can be attained exactly or approximately so via algorithmic solutions with various levels of computational complexity, ranging from least-squares fits to convex optimization problems, and from polynomial-time searches over graphs to mixed-integer programs. Although the emphasis is on radial single-phase feeders, extensions to meshed and/or multiphase circuits are sometimes possible and discussed. This tutorial aspires to provide researchers and engineers with knowledge of the current state-of-the-art in tractable distribution grid learning and insights into future directions of work.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.