Cyber defense is reactive and slow. On average, the time-to-remedy is hundreds of times larger than the time-to-compromise. In response to the expanding ever-more-complex threat landscape, Digital Twins (DTs) and particularly Human Digital Twins (HDTs) offer the capability of running massive simulations across multiple knowledge domains. Simulated results may offer insights into adversaries' behaviors and tactics, resulting in better proactive cyber-defense strategies. For the first time, this paper solidifies the vision of DTs and HDTs for cybersecurity via the Cybonto conceptual framework proposal. The paper also contributes the Cybonto ontology, formally documenting 108 constructs and thousands of cognitive-related paths based on 20 time-tested psychology theories. Finally, the paper applied 20 network centrality algorithms in analyzing the 108 constructs. The identified top 10 constructs call for extensions of current digital cognitive architectures in preparation for the DT future.
While the digitization of power distribution grids brings many benefits, it also introduces new vulnerabilities for cyber-attacks. To maintain secure operations in the emerging threat landscape, detecting and implementing countermeasures against cyber-attacks are paramount. However, due to the lack of publicly available attack data against Smart Grids (SGs) for countermeasure development, simulation-based data generation approaches offer the potential to provide the needed data foundation. Therefore, our proposed approach provides flexible and scalable replication of multi-staged cyber-attacks in an SG Co-Simulation Environment (COSE). The COSE consists of an energy grid simulator, simulators for Operation Technology (OT) devices, and a network emulator for realistic IT process networks. Focusing on defensive and offensive use cases in COSE, our simulated attacker can perform network scans, find vulnerabilities, exploit them, gain administrative privileges, and execute malicious commands on OT devices. As an exemplary countermeasure, we present a built-in Intrusion Detection System (IDS) that analyzes generated network traffic using anomaly detection with Machine Learning (ML) approaches. In this work, we provide an overview of the SG COSE, present a multi-stage attack model with the potential to disrupt grid operations, and show exemplary performance evaluations of the IDS in specific scenarios.
We propose the novel concept of a cyber-human system (CHS) and a diverse and pluralistic "mixed-life society," in which cyber and human societies commit to each other. This concept enhances the cyber-physical system (CPS), which is associated with the current Society 5.0, which is a social vision realized through the fusion of cyber space (virtual space) and physical space (real space). In addition, the Cyber-Human Social Co-Operating System (Social Co-OS) combining cyber and human societies is shown as a form of architecture that embodies the CHS. In this architecture, the cyber system and the human system cooperate through the fast loop (operation and administration) and the slow loop (consensus and politics). Furthermore, the technical content and current implementation of the basic functions of the Social Co-OS are described. These functions consist of individual behavioral diagnostics and interventions in the fast loop and, group decision diagnostics and consensus building in the slow loop. This system will contribute to mutual aid communities and platform cooperatives.
The growth of the Internet and its associated technologies; including digital services have tremendously impacted our society. However, scholars have noted a trend in data flow and collection; and have alleged mass surveillance and digital supremacy. To this end therefore, nations of the world such as Russia, China, Germany, Canada, France and Brazil among others have taken steps toward changing the narrative. The question now is, should Africans join these giants in this school of thought on digital sovereignty or fold their hands to remain on the other side of the divide? This question among others are the main reasons that provoked the thoughts of putting this paper together. This is with a view to demystifying the strategies to reconfigure data infrastructure in the context of Africa. It also highlights the benefits of digital technologies and its propensity to foster all round development in the continent as it relates to economic face-lift, employment creation, national security, among others. There is therefore a need for African nations to design appropriate blueprint to ensure security of her digital infrastructure and the flow of data within her cyber space. In addition, a roadmap in the immediate, short- and long-term in accordance with the framework of African developmental goals should be put in place to guide the implementation.
With the recognition of cyberspace as an operating domain, concerted effort is now being placed on addressing it in the whole-of-domain manner found in land, sea, undersea, air, and space domains. Among the first steps in this effort is applying the standard supporting concepts of security, defense, and deterrence to the cyber domain. This paper presents an architecture that helps realize forward defense in cyberspace, wherein adversarial actions are repulsed as close to the origin as possible. However, substantial work remains in making the architecture an operational reality including furthering fundamental research cyber science, conducting design trade-off analysis, and developing appropriate public policy frameworks.
The scientific method presents a key challenge to privacy because it requires many samples to support a claim. When samples are commercially valuable or privacy-sensitive enough, their owners have strong reasons to avoid releasing them for scientific study. Privacy techniques seek to mitigate this tension by enforcing limits on one's ability to use studied samples for secondary purposes. Recent work has begun combining these techniques into end-to-end systems for protecting data. In this work, we assemble the first such combination which is sufficient for a privacy-layman to use familiar tools to experiment over private data while the infrastructure automatically prohibits privacy leakage. We support this theoretical system with a prototype within the Syft privacy platform using the PyTorch framework.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Neural networks are increasingly used for intrusion detection on industrial control systems (ICS). With neural networks being vulnerable to adversarial examples, attackers who wish to cause damage to an ICS can attempt to hide their attacks from detection by using adversarial example techniques. In this work we address the domain specific challenges of constructing such attacks against autoregressive based intrusion detection systems (IDS) in an ICS setting. We model an attacker that can compromise a subset of sensors in a ICS which has a LSTM based IDS. The attacker manipulates the data sent to the IDS, and seeks to hide the presence of real cyber-physical attacks occurring in the ICS. We evaluate our adversarial attack methodology on the Secure Water Treatment system when examining solely continuous data, and on data containing a mixture of discrete and continuous variables. In the continuous data domain our attack successfully hides the cyber-physical attacks requiring 2.87 out of 12 monitored sensors to be compromised on average. With both discrete and continuous data our attack required, on average, 3.74 out of 26 monitored sensors to be compromised.
Security function outsourcing has witnessed both research and deployment in the recent years. While most existing services take a straight-forward approach of cloud hosting, on-path transit networks (such as ISPs) are increasingly more interested in offering outsourced security services to end users. Recent proposals (such as SafeBricks and mbTLS) have made it possible to outsource sensitive security applications to untrusted, arbitrary networks, rendering on-path security function outsourcing more promising than ever. However, to provide on-path security function outsourcing, there is one crucial component that is still missing -- a practical end-to-end network protocol. Thus, the discovery and orchestration of multiple capable and willing transit networks for user-requested security functions have only been assumed in many studies without any practical solutions. In this work, we propose Opsec, an end-to-end security-outsourcing protocol that fills this gap and brings us closer to the vision of on-path security function outsourcing. Opsec automatically discovers one or more transit ISPs between a client and a server, and requests user-specified security functions efficiently. When designing Opsec, we prioritize the practicality and applicability of this new end-to-end protocol in the current Internet. Our proof-of-concept implementation of Opsec for web sessions shows that an end user can easily start a new web session with a few clicks of a browser plug-in, to specify a series of security functions of her choice. We show that it is possible to implement such a new end-to-end service model in the current Internet for the majority of the web services without any major changes to the standard protocols (e.g., TCP, TLS, HTTP) and the existing network infrastructure (e.g., ISP's routing primitives).
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
We evaluate the robustness of Adversarial Logit Pairing, a recently proposed defense against adversarial examples. We find that a network trained with Adversarial Logit Pairing achieves 0.6% accuracy in the threat model in which the defense is considered. We provide a brief overview of the defense and the threat models/claims considered, as well as a discussion of the methodology and results of our attack, which may offer insights into the reasons underlying the vulnerability of ALP to adversarial attack.