亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Connected and autonomous vehicles (CAVs) will greatly impact the lives of individuals with visual impairments, but how they differ in expectations compared to sighted individuals is not clear. The present research reports results based on survey responses from 114 visually impaired participants and 117 panel recruited participants without visual impairments, from Germany. Their attitudes towards autonomous vehicles and their expectations for consequences of wide-spread adoption of CAVs are assessed. Results indicate significantly more positive CAV attitudes in participants with visual impairments compared to those without visual impairments. Mediation analyses indicate that visually impaired individuals' more positive CAV attitudes (compared to sighted individuals') are largely explained by higher hopes for independence, and more optimistic expectations regarding safety and sustainability. Policy makers should ensure accessibility without sacrificing goals for higher safety and lower ecological impact to make CAVs an acceptable inclusive mobility solution.

相關內容

會議涵蓋了從理論結果到具體應用的各個方面,重點討論了實際的驗證工具以及實現這些工具所需的算法和技術。CAV認為,在向生物系統和計算機安全等新領域擴展的同時,繼續推動硬件和軟件驗證的進步至關重要。會議記錄將發表在《計算機科學》系列的斯普林格-維拉格講稿中。預計將邀請一些論文參加《系統設計中的形式化方法》專刊和《ACM雜志》。官網鏈接: · Performer · 可約的 · 線性的 · 分解的 ·
2024 年 3 月 28 日

In this work, the infinite GMRES algorithm, recently proposed by Correnty et al., is employed in contour integral-based nonlinear eigensolvers, avoiding the computation of costly factorizations at each quadrature node to solve the linear systems efficiently. Several techniques are applied to make the infinite GMRES memory-friendly, computationally efficient, and numerically stable in practice. More specifically, we analyze the relationship between polynomial eigenvalue problems and their scaled linearizations, and provide a novel weighting strategy which can significantly accelerate the convergence of infinite GMRES in this particular context. We also adopt the technique of TOAR to infinite GMRES to reduce the memory footprint. Theoretical analysis and numerical experiments are provided to illustrate the efficiency of the proposed algorithm.

Indoor positioning using UWB technology has gained interest due to its centimeter-level accuracy potential. However, multipath effects and non-line-of-sight conditions cause ranging errors between anchors and tags. Existing approaches for mitigating these ranging errors rely on collecting large labeled datasets, making them impractical for real-world deployments. This paper proposes a novel self-supervised deep reinforcement learning approach that does not require labeled ground truth data. A reinforcement learning agent uses the channel impulse response as a state and predicts corrections to minimize the error between corrected and estimated ranges. The agent learns, self-supervised, by iteratively improving corrections that are generated by combining the predictability of trajectories with filtering and smoothening. Experiments on real-world UWB measurements demonstrate comparable performance to state-of-the-art supervised methods, overcoming data dependency and lack of generalizability limitations. This makes self-supervised deep reinforcement learning a promising solution for practical and scalable UWB-ranging error correction.

In recent years, several influential computational models and metrics have been proposed to predict how humans comprehend and process sentence. One particularly promising approach is contextual semantic similarity. Inspired by the attention algorithm in Transformer and human memory mechanisms, this study proposes an ``attention-aware'' approach for computing contextual semantic relevance. This new approach takes into account the different contributions of contextual parts and the expectation effect, allowing it to incorporate contextual information fully. The attention-aware approach also facilitates the simulation of existing reading models and evaluate them. The resulting ``attention-aware'' metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks recorded in an eye-tracking corpus than those calculated by existing approaches. The study's findings further provide strong support for the presence of semantic preview benefits in Chinese naturalistic reading. Furthermore, the attention-aware metrics of semantic relevance, being memory-based, possess high interpretability from both linguistic and cognitive standpoints, making them a valuable computational tool for modeling eye-movements in reading and further gaining insight into the process of language comprehension. Our approach underscores the potential of these metrics to advance our comprehension of how humans understand and process language, ultimately leading to a better understanding of language comprehension and processing.

In general insurance, claims are often lower-truncated and right-censored because insurance contracts may involve deductibles and maximal covers. Most classical statistical models are not (directly) suited to model lower-truncated and right-censored claims. A surprisingly flexible family of distributions that can cope with lower-truncated and right-censored claims is the class of MBBEFD distributions that originally has been introduced by Bernegger (1997) for reinsurance pricing, but which has not gained much attention outside the reinsurance literature. Interestingly, in general insurance, we mainly rely on unimodal skewed densities, whereas the reinsurance literature typically proposes monotonically decreasing densities within the MBBEFD class. We show that this class contains both types of densities, and we extend it to a bigger family of distribution functions suitable for modeling lower-truncated and right-censored claims. In addition, we discuss how changes in the deductible or the maximal cover affect the chosen distributions.

Data driven control of a continuum manipulator requires a lot of data for training but generating sufficient amount of real time data is not cost efficient. Random actuation of the manipulator can also be unsafe sometimes. Meta learning has been used successfully to adapt to a new environment. Hence, this paper tries to solve the above mentioned problem using meta learning. We consider two cases for that. First, this paper proposes a method to use simulation data for training the model using MAML(Model-Agnostic Meta-Learning). Then, it adapts to the real world using gradient steps. Secondly,if the simulation model is not available or difficult to formulate, then we propose a CGAN(Conditional Generative adversial network)-MAML based method for it. The model is trained using a small amount of real time data and augmented data for different loading conditions. Then, adaptation is done in the real environment. It has been found out from the experiments that the relative positioning error for both the cases are below 3%. The proposed models are experimentally verified on a real continuum manipulator.

The focus of this paper is to develop a methodology that enables an unmanned surface vehicle (USV) to efficiently track a planned path. The introduction of a vector field-based adaptive line-of-sight guidance law (VFALOS) for accurate trajectory tracking and minimizing the overshoot response time during USV tracking of curved paths improves the overall line-of-sight (LOS) guidance method. These improvements contribute to faster convergence to the desired path, reduce oscillations, and can mitigate the effects of persistent external disturbances. It is shown that the proposed guidance law exhibits k-exponential stability when converging to the desired path consisting of straight and curved lines. The results in the paper show that the proposed method effectively improves the accuracy of the USV tracking the desired path while ensuring the safety of the USV work.

In order to estimate the proportion of `immune' or `cured' subjects who will never experience failure, a sufficiently long follow-up period is required. Several statistical tests have been proposed in the literature for assessing the assumption of sufficient follow-up, meaning that the study duration is longer than the support of the survival times for the uncured subjects. However, for practical purposes, the follow-up would be considered sufficiently long if the probability for the event to happen after the end of the study is very small. Based on this observation, we formulate a more relaxed notion of `practically' sufficient follow-up characterized by the quantiles of the distribution and develop a novel nonparametric statistical test. The proposed method relies mainly on the assumption of a non-increasing density function in the tail of the distribution. The test is then based on a shape constrained density estimator such as the Grenander or the kernel smoothed Grenander estimator and a bootstrap procedure is used for computation of the critical values. The performance of the test is investigated through an extensive simulation study, and the method is illustrated on breast cancer data.

Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.

Large multi-modal models (LMMs) hold the potential to usher in a new era of automated visual assistance for people who are blind or low vision (BLV). Yet, these models have not been systematically evaluated on data captured by BLV users. We address this by empirically assessing CLIP, a widely-used LMM likely to underpin many assistive technologies. Testing 25 CLIP variants in a zero-shot classification task, we find that their accuracy is 15 percentage points lower on average for images captured by BLV users than web-crawled images. This disparity stems from CLIP's sensitivities to 1) image content (e.g. not recognizing disability objects as well as other objects); 2) image quality (e.g. not being robust to lighting variation); and 3) text content (e.g. not recognizing objects described by tactile adjectives as well as visual ones). We delve deeper with a textual analysis of three common pre-training datasets: LAION-400M, LAION-2B and DataComp-1B, showing that disability content is rarely mentioned. We then provide three examples that illustrate how the performance disparities extend to three downstream models underpinned by CLIP: OWL-ViT, CLIPSeg and DALL-E2. We find that few-shot learning with as few as 5 images can mitigate CLIP's quality-of-service disparities for BLV users in some scenarios, which we discuss alongside a set of other possible mitigations.

Neural Radiance Fields (NeRFs) have emerged as promising tools for advancing autonomous driving (AD) research, offering scalable closed-loop simulation and data augmentation capabilities. However, to trust the results achieved in simulation, one needs to ensure that AD systems perceive real and rendered data in the same way. Although the performance of rendering methods is increasing, many scenarios will remain inherently challenging to reconstruct faithfully. To this end, we propose a novel perspective for addressing the real-to-simulated data gap. Rather than solely focusing on improving rendering fidelity, we explore simple yet effective methods to enhance perception model robustness to NeRF artifacts without compromising performance on real data. Moreover, we conduct the first large-scale investigation into the real-to-simulated data gap in an AD setting using a state-of-the-art neural rendering technique. Specifically, we evaluate object detectors and an online mapping model on real and simulated data, and study the effects of different pre-training strategies. Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases. Last, we delve into the correlation between the real-to-simulated gap and image reconstruction metrics, identifying FID and LPIPS as strong indicators.

北京阿比特科技有限公司