The Smart Contract Weakness Classification Registry (SWC Registry) is a widely recognized list of smart contract weaknesses specific to the Ethereum platform. In recent years, significant research efforts have been dedicated to building tools to detect SWC weaknesses. However, evaluating these tools has proven challenging due to the absence of a large, unbiased, real-world dataset. To address this issue, we recruited 22 participants and spent 44 person-months analyzing 1,322 open-source audit reports from 30 security teams. In total, we identified 10,016 weaknesses and developed two distinct datasets, i.e., DAppSCAN-Source and DAppSCAN-Bytecode. The DAppSCAN-Source dataset comprises 25,077 Solidity files, featuring 1,689 SWC vulnerabilities sourced from 1,139 real-world DApp projects. The Solidity files in this dataset may not be directly compilable. To enable the dataset to be compilable, we developed a tool capable of automatically identifying dependency relationships within DApps and completing missing public libraries. By utilizing this tool, we created our DAPPSCAN-Bytecode dataset, which consists of 8,167 compiled smart contract bytecode with 895 SWC weaknesses. Based on the second dataset, we conducted an empirical study to assess the performance of five state-of-the-art smart contract vulnerability detection tools. The evaluation results revealed subpar performance for these tools in terms of both effectiveness and success detection rate, indicating that future development should prioritize real-world datasets over simplistic toy contracts.
The storage, management, and application of massive spatio-temporal data are widely applied in various practical scenarios, including public safety. However, due to the unique spatio-temporal distribution characteristics of re-al-world data, most existing methods have limitations in terms of the spatio-temporal proximity of data and load balancing in distributed storage. There-fore, this paper proposes an efficient partitioning method of large-scale public safety spatio-temporal data based on information loss constraints (IFL-LSTP). The IFL-LSTP model specifically targets large-scale spatio-temporal point da-ta by combining the spatio-temporal partitioning module (STPM) with the graph partitioning module (GPM). This approach can significantly reduce the scale of data while maintaining the model's accuracy, in order to improve the partitioning efficiency. It can also ensure the load balancing of distributed storage while maintaining spatio-temporal proximity of the data partitioning results. This method provides a new solution for distributed storage of mas-sive spatio-temporal data. The experimental results on multiple real-world da-tasets demonstrate the effectiveness and superiority of IFL-LSTP.
With the rise of Large Language Models (LLMs) and their ubiquitous deployment in diverse domains, measuring language model behavior on realistic data is imperative. For example, a company deploying a client-facing chatbot must ensure that the model will not respond to client requests with profanity. Current evaluations approach this problem using small, domain-specific datasets with human-curated labels. These evaluation sets are often sampled from a narrow and simplified distribution, and data sources can unknowingly be leaked into the training set which can lead to misleading evaluations. To bypass these drawbacks, we propose a framework for self-supervised evaluation of LLMs by analyzing their sensitivity or invariance to transformations on the input text. Self-supervised evaluation can directly monitor LLM behavior on datasets collected in the wild or streamed during live model deployment. We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence, in addition to sensitivity to grammatical structure and tokenization errors. When comparisons to similar human-labeled benchmarks are available, we find strong correlations between self-supervised and human-supervised evaluations. The self-supervised paradigm complements current evaluation strategies that rely on labeled data.
The search and retrieval of digital histopathology slides is an important task that has yet to be solved. In this case study, we investigate the clinical readiness of three state-of-the-art histopathology slide search engines, Yottixel, SISH, and RetCCL, on three patients with solid tumors. We provide a qualitative assessment of each model's performance in providing retrieval results that are reliable and useful to pathologists. We found that all three image search engines fail to produce consistently reliable results and have difficulties in capturing granular and subtle features of malignancy, limiting their diagnostic accuracy. Based on our findings, we also propose a minimal set of requirements to further advance the development of accurate and reliable histopathology image search engines for successful clinical adoption.
Recent years have witnessed the fast penetration of Virtual Reality (VR) and Augmented Reality (AR) systems into our daily life, the security and privacy issues of the VR/AR applications have been attracting considerable attention. Most VR/AR systems adopt head-mounted devices (i.e., smart headsets) to interact with users and the devices usually store the users' private data. Hence, authentication schemes are desired for the head-mounted devices. Traditional knowledge-based authentication schemes for general personal devices have been proved vulnerable to shoulder-surfing attacks, especially considering the headsets may block the sight of the users. Although the robustness of the knowledge-based authentication can be improved by designing complicated secret codes in virtual space, this approach induces a compromise of usability. Another choice is to leverage the users' biometrics; however, it either relies on highly advanced equipments which may not always be available in commercial headsets or introduce heavy cognitive load to users. In this paper, we propose a vibration-based authentication scheme, VibHead, for smart headsets. Since the propagation of vibration signals through human heads presents unique patterns for different individuals, VibHead employs a CNN-based model to classify registered legitimate users based the features extracted from the vibration signals. We also design a two-step authentication scheme where the above user classifiers are utilized to distinguish the legitimate user from illegitimate ones. We implement VibHead on a Microsoft HoloLens equipped with a linear motor and an IMU sensor which are commonly used in off-the-shelf personal smart devices. According to the results of our extensive experiments, with short vibration signals ($\leq 1s$), VibHead has an outstanding authentication accuracy; both FAR and FRR are around 5%.
Trust is crucial for ensuring the safety, security, and widespread adoption of automated vehicles (AVs), and if trust is lacking, drivers and the public may not be willing to use them. This research seeks to investigate trust profiles in order to create personalized experiences for drivers in AVs. This technique helps in better understanding drivers' dynamic trust from a persona's perspective. The study was conducted in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition with eight takeover requests (TORs) in different scenarios. Drivers' dispositional trust, initial learned trust, dynamic trust, personality, and emotions were measured. We identified three trust profiles (i.e., believers, oscillators, and disbelievers) using a K-means clustering model. In order to validate this model, we built a multinomial logistic regression model based on SHAP explainer that selected the most important features to predict the trust profiles with an F1-score of 0.90 and accuracy of 0.89. We also discussed how different individual factors influenced trust profiles which helped us understand trust dynamics better from a persona's perspective. Our findings have important implications for designing a personalized in-vehicle trust monitoring and calibrating system to adjust drivers' trust levels in order to improve safety and experience in automated driving.
The Unmanned Aerial Vehicle (UAV) swarm networks will play a crucial role in the B5G/6G network thanks to its appealing features, such as wide coverage and on-demand deployment. Emergency communication (EC) is essential to promptly inform UAVs of potential danger to avoid accidents, whereas the conventional communication-only feedback-based methods, which separate the digital and physical identities (DPI), bring intolerable latency and disturb the unintended receivers. In this paper, we present a novel DPI-Mapping solution to match the identities (IDs) of UAVs from dual domains for visual networking, which is the first solution that enables UAVs to communicate promptly with what they see without the tedious exchange of beacons. The IDs are distinguished dynamically by defining feature similarity, and the asymmetric IDs from different domains are matched via the proposed bio-inspired matching algorithm. We also consider Kalman filtering to combine the IDs and predict the states for accurate mapping. Experiment results show that the DPI-Mapping reduces individual inaccuracy of features and significantly outperforms the conventional broadcast-based and feedback-based methods in EC latency. Furthermore, it also reduces the disturbing messages without sacrificing the hit rate.
Social world knowledge is a key ingredient in effective communication and information processing by humans and machines alike. As of today, there exist many knowledge bases that represent factual world knowledge. Yet, there is no resource that is designed to capture social aspects of world knowledge. We believe that this work makes an important step towards the formulation and construction of such a resource. We introduce SocialVec, a general framework for eliciting low-dimensional entity embeddings from the social contexts in which they occur in social networks. In this framework, entities correspond to highly popular accounts which invoke general interest. We assume that entities that individual users tend to co-follow are socially related, and use this definition of social context to learn the entity embeddings. Similar to word embeddings which facilitate tasks that involve text semantics, we expect the learned social entity embeddings to benefit multiple tasks of social flavor. In this work, we elicited the social embeddings of roughly 200K entities from a sample of 1.3M Twitter users and the accounts that they follow. We employ and gauge the resulting embeddings on two tasks of social importance. First, we assess the political bias of news sources in terms of entity similarity in the social embedding space. Second, we predict the personal traits of individual Twitter users based on the social embeddings of entities that they follow. In both cases, we show advantageous or competitive performance using our approach compared with task-specific baselines. We further show that existing entity embedding schemes, which are fact-based, fail to capture social aspects of knowledge. We make the learned social entity embeddings available to the research community to support further exploration of social world knowledge and its applications.
The widespread diffusion of connected smart devices has contributed to the rapid expansion and evolution of the Internet at its edge. Personal mobile devices interact with other smart objects in their surroundings, adapting behavior based on rapidly changing user context. The ability of mobile devices to process this data locally is crucial for quick adaptation. This can be achieved through a single elaboration process integrated into user applications or a middleware platform for context processing. However, the lack of public datasets considering user context complexity in the mobile environment hinders research progress. We introduce MyDigitalFootprint, a large-scale dataset comprising smartphone sensor data, physical proximity information, and Online Social Networks interactions. This dataset supports multimodal context recognition and social relationship modeling. It spans two months of measurements from 31 volunteer users in their natural environment, allowing for unrestricted behavior. Existing public datasets focus on limited context data for specific applications, while ours offers comprehensive information on the user context in the mobile environment. To demonstrate the dataset's effectiveness, we present three context-aware applications utilizing various machine learning tasks: (i) a social link prediction algorithm based on physical proximity data, (ii) daily-life activity recognition using smartphone-embedded sensors data, and (iii) a pervasive context-aware recommender system. Our dataset, with its heterogeneity of information, serves as a valuable resource to validate new research in mobile and edge computing.
Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey to focus on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area. A regularly updated project page can be found at //github.com/tinatiansjz/hmr-survey.
Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.