The Internet of Things (IoT) brings connectivity to a massive number of devices that demand energy-efficient solutions to deal with limited battery capacities, uplink-dominant traffic, and channel impairments. In this work, we explore the use of Unmanned Aerial Vehicles (UAVs) equipped with configurable antennas as a flexible solution for serving low-power IoT networks. We formulate an optimization problem to set the position and antenna beamwidth of the UAV, and the transmit power of the IoT devices subject to average-Signal-to-average-Interference-plus-Noise Ratio ($\bar{\text{S}}\overline{\text{IN}}\text{R}$) Quality of Service (QoS) constraints. We minimize the worst-case average energy consumption of the latter, thus, targeting the fairest allocation of the energy resources. The problem is non-convex and highly non-linear; therefore, we re-formulate it as a series of three geometric programs that can be solved iteratively. Results reveal the benefits of planning the network compared to a random deployment in terms of reducing the worst-case average energy consumption. Furthermore, we show that the target $\bar{\text{S}}\overline{\text{IN}}\text{R}$ is limited by the number of IoT devices, and highlight the dominant impact of the UAV hovering height when serving wider areas. Our proposed algorithm outperforms other optimization benchmarks in terms of minimizing the average energy consumption at the most energy-demanding IoT device, and convergence time.
This paper investigates a new downlink nonorthogonal multiple access (NOMA) system, where a multiantenna unmanned aerial vehicle (UAV) is powered by wireless power transfer (WPT) and serves as the base station for multiple pairs of ground users (GUs) running NOMA in each pair. An energy efficiency (EE) maximization problem is formulated to jointly optimize the WPT time and the placement for the UAV, and the allocation of the UAV's transmit power between different NOMA user pairs and within each pair. To efficiently solve this nonconvex problem, we decompose the problem into three subproblems using block coordinate descent. For the subproblem of intra-pair power allocation within each NOMA user pair, we construct a supermodular game with confirmed convergence to a Nash equilibrium. Given the intra-pair power allocation, successive convex approximation is applied to convexify and solve the subproblem of WPT time allocation and inter-pair power allocation between the user pairs. Finally, we solve the subproblem of UAV placement by using the Lagrange multiplier method. Simulations show that our approach can substantially outperform its alternatives that do not use NOMA and WPT techniques or that do not optimize the UAV location.
We study a heterogeneous Rayleigh fading wireless sensor network (WSN) in which densely deployed sensor nodes monitor an environment and transmit their sensed information to base stations (BSs) using access points (APs) as relays to facilitate the data transfer. We consider both large-scale and small-scale propagation effects in our system model and formulate the node deployment problem as an optimization problem aimed at minimizing the wireless communication network's power consumption. By imposing a desired outage probability constraint on all communication channels, we derive the necessary conditions for the optimal deployment that not only minimize the power consumption, but also guarantee all wireless links to have an outage probability below the given threshold. In addition, we study the necessary conditions for an optimal deployment given ergodic capacity constraints. We compare our node deployment algorithms with similar algorithms in the literature and demonstrate their efficacy and superiority.
Computer models are widely used in decision support for energy systems operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models and used to generate predictions together with a measure of uncertainty about the predicted model output. This paper presents a computationally efficient framework for propagating uncertainty within a network of models with high-dimensional outputs used for energy planning. We present a case study from a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. The system model considered for this case study is simple, however the framework can be applied to larger networks of more complex models.
Unlike conventional cars, connected and autonomous vehicles (CAVs) can cross intersections in a lane-free order and utilise the whole area of intersections. This paper presents a minimum-time optimal control problem to centrally control the CAVs to simultaneously cross an intersection in the shortest possible time. Dual problem theory is employed to convexify the constraints of CAVs to avoid collision with each other and with road boundaries. The developed formulation is smooth and solvable by gradient-based algorithms. Simulation results show that the proposed strategy reduces the crossing time of intersections by an average of 52% and 54% as compared to, respectively, the state-of-the-art reservation-based and lane-free methods. Furthermore, the crossing time by the proposed strategy is fixed to a constant value for an intersection regardless of the number of CAVs.
Split learning (SL) is a collaborative learning framework, which can train an artificial intelligence (AI) model between a device and an edge server by splitting the AI model into a device-side model and a server-side model at a cut layer. The existing SL approach conducts the training process sequentially across devices, which incurs significant training latency especially when the number of devices is large. In this paper, we design a novel SL scheme to reduce the training latency, named Cluster-based Parallel SL (CPSL) which conducts model training in a "first-parallel-then-sequential" manner. Specifically, the CPSL is to partition devices into several clusters, parallelly train device-side models in each cluster and aggregate them, and then sequentially train the whole AI model across clusters, thereby parallelizing the training process and reducing training latency. Furthermore, we propose a resource management algorithm to minimize the training latency of CPSL considering device heterogeneity and network dynamics in wireless networks. This is achieved by stochastically optimizing the cut layer selection, real-time device clustering, and radio spectrum allocation. The proposed two-timescale algorithm can jointly make the cut layer selection decision in a large timescale and device clustering and radio spectrum allocation decisions in a small timescale. Extensive simulation results on non-independent and identically distributed data demonstrate that the proposed solutions can greatly reduce the training latency as compared with the existing SL benchmarks, while adapting to network dynamics.
The geometric high-order regularization methods such as mean curvature and Gaussian curvature, have been intensively studied during the last decades due to their abilities in preserving geometric properties including image edges, corners, and image contrast. However, the dilemma between restoration quality and computational efficiency is an essential roadblock for high-order methods. In this paper, we propose fast multi-grid algorithms for minimizing both mean curvature and Gaussian curvature energy functionals without sacrificing the accuracy for efficiency. Unlike the existing approaches based on operator splitting and the Augmented Lagrangian method (ALM), no artificial parameters are introduced in our formulation, which guarantees the robustness of the proposed algorithm. Meanwhile, we adopt the domain decomposition method to promote parallel computing and use the fine-to-coarse structure to accelerate the convergence. Numerical experiments are presented on both image denoising and CT reconstruction problem to demonstrate the ability to recover image texture and the efficiency of the proposed method.
The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.
One of the most important technical challenges when designing a Cognitive Radio Networks (CRNs) is spectrum sensing, which has the responsibility of recognizing the presence or absence of the primary users in the frequency bands. A common technique used for spectrum sensing is double energy detection since it can operate without any prior information regarding the characteristics of the primary user signals. A double threshold energy detection algorithm is based on the use of two thresholds, to check the energy of the received signals and decided whether the spectrum is occupied or not. Furthermore, thresholds play a key role in the energy detection algorithm, by considering the stochastic features of noise in this model, as a result calculating the optimal threshold is a crucial task. In this paper, the Bi-Section algorithm was used to detect the optimum energy level in the fuzzy region which is an area between the low and high energy threshold. For this purpose, the decision threshold was determined by the use of the Bisection function for cognitive users. Numerical simulations show that the proposed method achieves better detection performance than the conventional double-threshold energy-sensing schemes. Moreover, the presented technique has advantages such as increasing the probability of detection of primary users and decreasing the probability of Collison between primary and secondary users.
We present a method for the control of robot swarms which allows the shaping and the translation of patterns of simple robots ("smart particles"), using two types of devices. These two types represent a hierarchy: a larger group of simple, oblivious robots (which we call the workers) that is governed by simple local attraction forces, and a smaller group (the guides) with sufficient mission knowledge to create and maintain a desired pattern by operating on the local forces of the former. This framework exploits the knowledge of the guides, which coordinate to shape the workers like smart particles by changing their interaction parameters. We study the approach with a large scale simulation experiment in a physics based simulator with up to 1000 robots forming three different patterns. Our experiments reveal that the approach scales well with increasing robot numbers, and presents little pattern distortion for a set of target moving shapes. We evaluate the approach on a physical swarm of robots that use visual inertial odometry to compute their relative positions and obtain results that are comparable with simulation. This work lays foundation for designing and coordinating configurable smart particles, with applications in smart materials and nanomedicine.
We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function $f(x)$ with condition number $\kappa$ subject to $x$ being an $s$-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT which also finds a solution of sparsity $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value $f(x^*)$ or the optimal sparsity level $s$. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an $\ell_2$ regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.