We study the convex hulls of reachable sets of nonlinear systems with bounded disturbances. Reachable sets play a critical role in control, but remain notoriously challenging to compute, and existing over-approximation tools tend to be conservative or computationally expensive. In this work, we exactly characterize the convex hulls of reachable sets as the convex hulls of solutions of an ordinary differential equation from all possible initial values of the disturbances. This finite-dimensional characterization unlocks a fast sampling-based method to accurately over-approximate reachable sets. We give applications to neural feedback loop analysis and robust model predictive control.
Public blockchains group submitted transactions into batches, called blocks. A natural question is how to determine which transactions are included in these batches. In this note, we show a gap between the welfare of so-called `fair' ordering, namely first-in-first-out (an ideal that a number of blockchain protocols strive to achieve), where the first transactions to arrive are the ones put into the block, and the welfare of `optimal' inclusion that is, at least approximately, welfare-maximizing, such as choosing which transactions are included in a block via an auction. We show this gap is positive under a simple model with mild assumptions where we assume transactions are, roughly speaking, uniformly drawn from a reasonable distribution. Our results formalize a performance metric for blockchain inclusion rules and consequently provide a framework to help design and compare these rules. The results can be directly extended to ordering mechanisms as well.
This paper investigates the performance of a singleuser fluid antenna system (FAS), by exploiting a class of elliptical copulas to describe the structure of dependency amongst the fluid antenna ports. By expressing Jakes' model in terms of the Gaussian copula, we consider two cases: (i) the general case, i.e., any arbitrary correlated fading distribution; and (ii) the specific case, i.e., correlated Nakagami-m fading. For both scenarios, we first derive analytical expressions for the cumulative distribution function (CDF) and probability density function (PDF) of the equivalent channel in terms of multivariate normal distribution. Then, we obtain the outage probability (OP) and the delay outage rate (DOR) to analyze the performance of the FAS. By employing the popular rank correlation coefficients such as Spearman's \{rho} and Kendall's {\tau}, we measure the degree of dependency in correlated arbitrary fading channels and illustrate how the Gaussian copula can be accurately connected to Jakes' model in FAS without complicated mathematical analysis. Numerical results show that increasing the fluid antenna size provides lower OP and DOR, but the system performance saturates as the number of antenna ports increases. In addition, our results indicate that FAS provides better performance compared to conventional single-fixed antenna systems even when the size of fluid antenna is small.
We consider a variant of the clustering problem for a complete weighted graph. The aim is to partition the nodes into clusters maximizing the sum of the edge weights within the clusters. This problem is known as the clique partitioning problem, being NP-hard in the general case of having edge weights of different signs. We propose a new method of estimating an upper bound of the objective function that we combine with the classical branch-and-bound technique to find the exact solution. We evaluate our approach on a broad range of random graphs and real-world networks. The proposed approach provided tighter upper bounds and achieved significant convergence speed improvements compared to known alternative methods.
The travelling salesman problem (TSP) is one of the well-studied NP-hard problems in the literature. The state-of-the art inexact TSP solvers are the Lin-Kernighan-Helsgaun (LKH) heuristic and Edge Assembly crossover (EAX). A recent study suggests that EAX with restart mechanisms perform well on a wide range of TSP instances. However, this study is limited to 2,000 city problems. We study for problems ranging from 2,000 to 85,900. We see that the performance of the solver varies with the type of the problem. However, combining these solvers in an ensemble setup, we are able to outperform the individual solver's performance. We see the ensemble setup as an efficient way to make use of the abundance of compute resources. In addition to EAX and LKH, we use several versions of the hybrid of EAX and Mixing Genetic Algorithm (MGA). A hybrid of MGA and EAX is known to solve some hard problems. We see that the ensemble of the hybrid version outperforms the state-of-the-art solvers on problems larger than 10,000 cities.
Perfect paradefinite algebras are De Morgan algebras expanded with a perfection (or classicality) operation. They form a variety that is term-equivalent to the variety of involutive Stone algebras. Their associated multiple-conclusion (Set-Set) and single-conclusion (Set-Fmla) order-preserving logics are non-algebraizable self-extensional logics of formal inconsistency and undeterminedness determined by a six-valued matrix, studied in depth by Gomes et al. (2022) from both the algebraic and the proof-theoretical perspectives. We continue hereby that study by investigating directions for conservatively expanding these logics with an implication connective (essentially, one that admits the deduction-detachment theorem). We first consider logics given by very simple and manageable non-deterministic semantics whose implication (in isolation) is classical. These, nevertheless, fail to be self-extensional. We then consider the implication realized by the relative pseudo-complement over the six-valued perfect paradefinite algebra. Our strategy is to expand such algebra with this connective and study the (self-extensional) Set-Set and Set-Fmla order-preserving logics, as well as the T-assertional logics of the variety induced by the new algebra. We provide axiomatizations for such new variety and for such logics, drawing parallels with the class of symmetric Heyting algebras and with Moisil's `symmetric modal logic'. For the Set-Set logic, in particular, the axiomatization we obtain is analytic. We close by studying interpolation properties for these logics and concluding that the new variety has the Maehara amalgamation property.
Recent work in algorithmic fairness has highlighted the challenge of defining racial categories for the purposes of anti-discrimination. These challenges are not new but have previously fallen to the state, which enacts race through government statistics, policies, and evidentiary standards in anti-discrimination law. Drawing on the history of state race-making, we examine how longstanding questions about the nature of race and discrimination appear within the algorithmic fairness literature. Through a content analysis of 60 papers published at FAccT between 2018 and 2020, we analyze how race is conceptualized and formalized in algorithmic fairness frameworks. We note that differing notions of race are adopted inconsistently, at times even within a single analysis. We also explore the institutional influences and values associated with these choices. While we find that categories used in algorithmic fairness work often echo legal frameworks, we demonstrate that values from academic computer science play an equally important role in the construction of racial categories. Finally, we examine the reasoning behind different operationalizations of race, finding that few papers explicitly describe their choices and even fewer justify them. We argue that the construction of racial categories is a value-laden process with significant social and political consequences for the project of algorithmic fairness. The widespread lack of justification around the operationalization of race reflects institutional norms that allow these political decisions to remain obscured within the backstage of knowledge production.
Our focus is on robust recovery algorithms in statistical linear inverse problem. We consider two recovery routines - the much studied linear estimate originating from Kuks and Olman [42] and polyhedral estimate introduced in [37]. It was shown in [38] that risk of these estimates can be tightly upper-bounded for a wide range of a priori information about the model through solving a convex optimization problem, leading to a computationally efficient implementation of nearly optimal estimates of these types. The subject of the present paper is design and analysis of linear and polyhedral estimates which are robust with respect to the uncertainty in the observation matrix. We evaluate performance of robust estimates under stochastic and deterministic matrix uncertainty and show how the estimation risk can be bounded by the optimal value of efficiently solvable convex optimization problem; "presumably good" estimates of both types are then obtained through optimization of the risk bounds with respect to estimate parameters.
There has been a growing interest in parallel strategies for solving trajectory optimization problems. One key step in many algorithmic approaches to trajectory optimization is the solution of moderately-large and sparse linear systems. Iterative methods are particularly well-suited for parallel solves of such systems. However, fast and stable convergence of iterative methods is reliant on the application of a high-quality preconditioner that reduces the spread and increase the clustering of the eigenvalues of the target matrix. To improve the performance of these approaches, we present a new parallel-friendly symmetric stair preconditioner. We prove that our preconditioner has advantageous theoretical properties when used in conjunction with iterative methods for trajectory optimization such as a more clustered eigenvalue spectrum. Numerical experiments with typical trajectory optimization problems reveal that as compared to the best alternative parallel preconditioner from the literature, our symmetric stair preconditioner provides up to a 34% reduction in condition number and up to a 25% reduction in the number of resulting linear system solver iterations.
Adversarial attacks expose vulnerabilities of deep learning models by introducing minor perturbations to the input, which lead to substantial alterations in the output. Our research focuses on the impact of such adversarial attacks on sequence-to-sequence (seq2seq) models, specifically machine translation models. We introduce algorithms that incorporate basic text perturbation heuristics and more advanced strategies, such as the gradient-based attack, which utilizes a differentiable approximation of the inherently non-differentiable translation metric. Through our investigation, we provide evidence that machine translation models display robustness displayed robustness against best performed known adversarial attacks, as the degree of perturbation in the output is directly proportional to the perturbation in the input. However, among underdogs, our attacks outperform alternatives, providing the best relative performance. Another strong candidate is an attack based on mixing of individual characters.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.