亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ontology alignment, a critical process in the Semantic Web for detecting relationships between different ontologies, has traditionally focused on identifying so-called "simple" 1-to-1 relationships through class labels and properties comparison. The more practically useful exploration of more complex alignments remains a hard problem to automate, and as such is largely underexplored, i.e. in application practice it is usually done manually by ontology and domain experts. Recently, the surge in Natural Language Processing (NLP) capabilities, driven by advancements in Large Language Models (LLMs), presents new opportunities for enhancing ontology engineering practices, including ontology alignment tasks. This paper investigates the application of LLM technologies to tackle the complex ontology alignment challenge. Leveraging a prompt-based approach and integrating rich ontology content so-called modules our work constitutes a significant advance towards automating the complex alignment task.

相關內容

Network Signalling Data (NSD) have the potential to provide continuous spatio-temporal information about the presence, mobility, and usage patterns of cell phone services by individuals. Such information is invaluable for monitoring large urban areas and supporting the implementation of decision-making services. When analyzed in real time, NSD can enable the early detection of critical urban events, including fires, large accidents, stampedes, terrorist attacks, and sports and leisure gatherings, especially if these events significantly impact mobile phone network activity in the affected areas. This paper presents empirical evidence that advanced NSD can detect anomalies in mobile traffic service consumption, attributable to critical urban events, with fine spatial and temporal resolutions. We introduce two methodologies for real-time anomaly detection from multivariate time series extracted from large-scale NSD, utilizing a range of algorithms adapted from the state-of-the-art in unsupervised machine learning techniques for anomaly detection. Our research includes a comprehensive quantitative evaluation of these algorithms on a large-scale dataset of NSD service consumption for the Paris region. The evaluation uses an original dataset of documented critical or unusual urban events. This dataset has been built as a ground truth basis for assessing the algorithms performance. The obtained results demonstrate that our framework can detect unusual events almost instantaneously and locate the affected areas with high precision, largely outperforming random classifiers. This efficiency and effectiveness underline the potential of NSD-based anomaly detection in significantly enhancing emergency response strategies and urban planning.

Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) like GPT-4 introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset of 166 papers from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date, encompassing 3,066 references in total. In our experiment, GPT-4 was tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias in GPT-4, which persists even after controlling for publication year, title length, number of authors, and venue. Additionally, we observe a large consistency between the characteristics of GPT-4's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended by GPT-4 are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases and introduce new ones, potentially skewing scientific knowledge dissemination. Our results underscore the need for identifying the model's biases and for developing balanced methods to interact with LLMs in general.

Radiotherapy treatment planning is a challenging large-scale optimization problem plagued by uncertainty. Following the robust optimization methodology, we propose a novel, spatially based uncertainty set for robust modeling of radiotherapy planning, producing solutions that are immune to unexpected changes in biological conditions. Our proposed uncertainty set realistically captures biological radiosensitivity patterns that are observed using recent advances in imaging, while its parameters can be personalized for individual patients. We exploit the structure of this set to devise a compact reformulation of the robust model. We develop a row-generation scheme to solve real, large-scale instances of the robust model. This method is then extended to a relaxation-based scheme for enforcing challenging, yet clinically important, dose-volume cardinality constraints. The computational performance of our algorithms, as well as the quality and robustness of the computed treatment plans, are demonstrated on simulated and real imaging data. Based on accepted performance measures, such as minimal target dose and homogeneity, these examples demonstrate that the spatially robust model achieves almost the same performance as the nominal model in the nominal scenario, and otherwise, the spatial model outperforms both the nominal and the box-uncertainty models.

Large scale machine learning-based Raga identification continues to be a nontrivial issue in the computational aspects behind Carnatic music. Each raga consists of many unique and intrinsic melodic patterns that can be used to easily identify them from others. These ragas can also then be used to cluster songs within the same raga, as well as identify songs in other closely related ragas. In this case, the input sound is analyzed using a combination of steps including using a Discrete Fourier transformation and using Triangular Filtering to create custom bins of possible notes, extracting features from the presence of particular notes or lack thereof. Using a combination of Neural Networks including 1D Convolutional Neural Networks conventionally known as Time-Delay Neural Networks) and Long Short-Term Memory (LSTM), which are a form of Recurrent Neural Networks, the backbone of the classification strategy to build the model can be created. In addition, to help with variations in shruti, a long-time attention-based mechanism will be implemented to determine the relative changes in frequency rather than the absolute differences. This will provide a much more meaningful data point when training audio clips in different shrutis. To evaluate the accuracy of the classifier, a dataset of 676 recordings is used. The songs are distributed across the list of ragas. The goal of this program is to be able to effectively and efficiently label a much wider range of audio clips in more shrutis, ragas, and with more background noise.

Instrumental variables (IVs) provide a powerful strategy for identifying causal effects in the presence of unobservable confounders. Within the nonparametric setting (NPIV), recent methods have been based on nonlinear generalizations of Two-Stage Least Squares and on minimax formulations derived from moment conditions or duality. In a novel direction, we show how to formulate a functional stochastic gradient descent algorithm to tackle NPIV regression by directly minimizing the populational risk. We provide theoretical support in the form of bounds on the excess risk, and conduct numerical experiments showcasing our method's superior stability and competitive performance relative to current state-of-the-art alternatives. This algorithm enables flexible estimator choices, such as neural networks or kernel based methods, as well as non-quadratic loss functions, which may be suitable for structural equations beyond the setting of continuous outcomes and additive noise. Finally, we demonstrate this flexibility of our framework by presenting how it naturally addresses the important case of binary outcomes, which has received far less attention by recent developments in the NPIV literature.

The increasing prevalence of Large Language Models (LMs) in critical applications highlights the need for controlled language generation strategies that are not only computationally efficient but that also enjoy performance guarantees. To achieve this, we use a common model of concept semantics as linearly represented in an LM's latent space. In particular, we take the view that natural language generation traces a trajectory in this continuous semantic space, realized by the language model's hidden activations. This view permits a control-theoretic treatment of text generation in latent space, in which we propose a lightweight, gradient-free intervention that dynamically steers trajectories away from regions corresponding to undesired meanings. Crucially, we show that this intervention, which we compute in closed form, is guaranteed (in probability) to steer the output into the allowed region. Finally, we demonstrate on a toxicity avoidance objective that the intervention steers language away from undesired content while maintaining text quality.

Peer prediction mechanisms motivate high-quality feedback with provable guarantees. However, current methods only apply to rather simple reports, like multiple-choice or scalar numbers. We aim to broaden these techniques to the larger domain of text-based reports, drawing on the recent developments in large language models. This vastly increases the applicability of peer prediction mechanisms as textual feedback is the norm in a large variety of feedback channels: peer reviews, e-commerce customer reviews, and comments on social media. We introduce two mechanisms, the Generative Peer Prediction Mechanism (GPPM) and the Generative Synopsis Peer Prediction Mechanism (GSPPM). These mechanisms utilize LLMs as predictors, mapping from one agent's report to a prediction of her peer's report. Theoretically, we show that when the LLM prediction is sufficiently accurate, our mechanisms can incentivize high effort and truth-telling as an (approximate) Bayesian Nash equilibrium. Empirically, we confirm the efficacy of our mechanisms through experiments conducted on two real datasets: the Yelp review dataset and the ICLR OpenReview dataset. We highlight the results that on the ICLR dataset, our mechanisms can differentiate three quality levels -- human-written reviews, GPT-4-generated reviews, and GPT-3.5-generated reviews in terms of expected scores. Additionally, GSPPM penalizes LLM-generated reviews more effectively than GPPM.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司