亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we focus on the data-driven discovery of a general second-order particle-based model that contains many state-of-the-art models for modeling the aggregation and collective behavior of interacting agents of similar size and body type. This model takes the form of a high-dimensional system of ordinary differential equations parameterized by two interaction kernels that appraise the alignment of positions and velocities. We propose a Gaussian Process-based approach to this problem, where the unknown model parameters are marginalized by using two independent Gaussian Process (GP) priors on latent interaction kernels constrained to dynamics and observational data. This results in a nonparametric model for interacting dynamical systems that accounts for uncertainty quantification. We also develop acceleration techniques to improve scalability. Moreover, we perform a theoretical analysis to interpret the methodology and investigate the conditions under which the kernels can be recovered. We demonstrate the effectiveness of the proposed approach on various prototype systems, including the selection of the order of the systems and the types of interactions. In particular, we present applications to modeling two real-world fish motion datasets that display flocking and milling patterns up to 248 dimensions. Despite the use of small data sets, the GP-based approach learns an effective representation of the nonlinear dynamics in these spaces and outperforms competitor methods.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · · · Networking · MoDELS ·
2023 年 12 月 22 日

In this paper, we delve into the challenge of optimizing joint communication and computation for semantic communication over wireless networks using a probability graph framework. In the considered model, the base station (BS) extracts the small-sized compressed semantic information through removing redundant messages based on the stored knowledge base. Specifically, the knowledge base is encapsulated in a probability graph that encapsulates statistical relations. At the user side, the compressed information is accurately deduced using the same probability graph employed by the BS. While this approach introduces an additional computational overhead for semantic information extraction, it significantly curtails communication resource consumption by transmitting concise data. We derive both communication and computation cost models based on the inference process of the probability graph. Building upon these models, we introduce a joint communication and computation resource allocation problem aimed at minimizing the overall energy consumption of the network, while accounting for latency, power, and semantic constraints. To address this problem, we obtain a closed-form solution for transmission power under a fixed semantic compression ratio. Subsequently, we propose an efficient linear search-based algorithm to attain the optimal solution for the considered problem with low computational complexity. Simulation results underscore the effectiveness of our proposed system, showcasing notable improvements compared to conventional non-semantic schemes.

In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community.

In this paper, we investigate a model relevant to semantics-aware goal-oriented communications, and we propose a new metric that incorporates the utilization of information in addition to its timelines. Specifically, we consider the transmission of observations from an external process to a battery-powered receiver through status updates. These updates inform the receiver about the process status and enable actuation if sufficient energy is available to achieve a goal. We focus on a wireless power transfer (WPT) model, where the receiver receives energy from a dedicated power transmitter and occasionally from the data transmitter when they share a common channel. We analyze the Age of Information (AoI) and propose a new metric, the \textit{Age of Actuation (AoA), which is relevant when the receiver utilizes the status updates to perform actions in a timely manner}. We provide analytical characterizations of the average AoA and the violation probability of the AoA, demonstrating that AoA generalizes AoI. Moreover, we introduce and analytically characterize the \textit{Probability of Missing Actuation (PoMA)}; this metric becomes relevant also \textit{to quantify the incurred cost of a missed action}. We formulate unconstrained and constrained optimization problems for all the metrics and present numerical evaluations of our analytical results. This proposed set of metrics goes beyond the traditional timeliness metrics since the synergy of different flows is now considered.

In this paper, we study a secure integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) simultaneously communicates with one single-antenna user and senses the location parameter of a target which serves as a potential eavesdropper via its reflected echo signals. In particular, we consider a challenging scenario where the target's location is unknown and random, while its distribution information is known a priori. First, we derive the posterior Cram\'er-Rao bound (PCRB) of the mean-squared error (MSE) in target location sensing, which has a complicated expression. To draw more insights, we derive a tight approximation of it in closed form, which indicates that the transmit beamforming should achieve a "probability-dependent power focusing" effect over possible target locations, with more power focused on highly-probable locations. Next, considering an artificial noise based beamforming structure, we formulate the transmit beamforming optimization problem to maximize the worst-case secrecy rate among all possible target (eavesdropper) locations, subject to a threshold on the sensing PCRB. The formulated problem is non-convex and difficult to solve. We show that the problem can be solved via a two-stage method, by first obtaining the optimal beamforming corresponding to any given threshold on the signal-to-interference-plus-noise ratio (SINR) at the eavesdropper, and then obtaining the optimal threshold via one-dimensional search. By applying the semi-definite relaxation (SDR) technique, we relax the first problem into a convex form and further prove that the relaxation is tight, based on which the optimal solution of the original beamforming optimization problem can be obtained with polynomial-time complexity. Then, we further propose two suboptimal solutions with lower complexity. Numerical results validate the effectiveness of our designs.

In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered RIS-empowered underlaid D2D system, we frame an OP minimization problem. We target the joint optimization of the transmit power at the D2D source and the RIS placement, under constraints on the transmit power at the D2D source and on the limited interference imposed on the cellular user for two RIS deployment topologies. Due to the coupled optimization variables, the formulated optimization problem is extremely intractable. We propose an equivalent transformation which we are able to solve analytically. In the transformed problem, an expression for the average value of the signal-to-interference-noise ratio (SINR) at the D2D receiver is derived in closed-form. Our theoretical derivations are corroborated through simulation results, and various system design insights are deduced. It is indicatively showcased that the proposed RIS-empowered underlaid D2D system design outperforms the benchmark semi-adaptive optimal power and optimal distance schemes, offering $44\%$ and $20\%$ performance improvement, respectively.

In this paper, we investigate the relationship between two elementary operations on derivations in adhesive high-level replacement systems that are well-known in the context of graph transformation: moving a derivation along a derivation based on parallel and sequential independence on one hand and restriction of a derivation with respect to a monomorphism into the start object on the other hand. Intuitively, a restriction clips off parts of the start object that are never matched by a rule application throughout the derivation on the other hand. As main result, it is shown that moving a derivation preserves its spine being the minimal restriction.

In this paper, we propose an novel methodology aimed at simulating the learning phenomenon of nystagmus through the application of differential blurring on datasets. Nystagmus is a biological phenomenon that influences human vision throughout life, notably by diminishing head shake from infancy to adulthood. Leveraging this concept, we address the issue of waste classification, a pressing global concern. The proposed framework comprises two modules, with the second module closely resembling the original Vision Transformer, a state-of-the-art model model in classification tasks. The primary motivation behind our approach is to enhance the model's precision and adaptability, mirroring the real-world conditions that the human visual system undergoes. This novel methodology surpasses the standard Vision Transformer model in waste classification tasks, exhibiting an improvement with a margin of 2%. This improvement underscores the potential of our methodology in improving model precision by drawing inspiration from human vision perception. Further research in the proposed methodology could yield greater performance results, and can be extrapolated to other global issues.

In this paper, we identify the criteria for the selection of the minimal and most efficient covariate adjustment sets for the regression calibration method developed by Carroll, Rupert and Stefanski (CRS, 1992), used to correct bias due to continuous exposure measurement error. We utilize directed acyclic graphs to illustrate how subject matter knowledge can aid in the selection of such adjustment sets. Valid measurement error correction requires the collection of data on any (1) common causes of true exposure and outcome and (2) common causes of measurement error and outcome, in both the main study and validation study. For the CRS regression calibration method to be valid, researchers need to minimally adjust for covariate set (1) in both the measurement error model (MEM) and the outcome model and adjust for covariate set (2) at least in the MEM. In practice, we recommend including the minimal covariate adjustment set in both the MEM and the outcome model. In contrast with the regression calibration method developed by Rosner, Spiegelman and Willet, it is valid and more efficient to adjust for correlates of the true exposure or of measurement error that are not risk factors in the MEM only under CRS method. We applied the proposed covariate selection approach to the Health Professional Follow-up Study, examining the effect of fiber intake on cardiovascular incidence. In this study, we demonstrated potential issues with a data-driven approach to building the MEM that is agnostic to the structural assumptions. We extend the originally proposed estimators to settings where effect modification by a covariate is allowed. Finally, we caution against the use of the regression calibration method to calibrate the true nutrition intake using biomarkers.

In this paper, we introduce an innovative approach for extracting trajectories from a camera sensor in GPS-denied environments, leveraging visual odometry. The system takes video footage captured by a forward-facing camera mounted on a vehicle as input, with the output being a chain code representing the camera's trajectory. The proposed methodology involves several key steps. Firstly, we employ phase correlation between consecutive frames of the video to extract essential information. Subsequently, we introduce a novel chain code method termed "dynamic chain code," which is based on the x-shift values derived from the phase correlation. The third step involves determining directional changes (forward, left, right) by establishing thresholds and extracting the corresponding chain code. This extracted code is then stored in a buffer for further processing. Notably, our system outperforms traditional methods reliant on spatial features, exhibiting greater speed and robustness in noisy environments. Importantly, our approach operates without external camera calibration information. Moreover, by incorporating visual odometry, our system enhances its accuracy in estimating camera motion, providing a more comprehensive understanding of trajectory dynamics. Finally, the system culminates in the visualization of the normalized camera motion trajectory.

In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.

北京阿比特科技有限公司