亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Implementation of a twin-field quantum key distribution network faces limitations, including the low tolerance of interference errors for phase-matching type protocols and the strict constraint regarding intensity and probability for sending-or-not-sending type protocols. Here, we propose a two-photon twin-field quantum key distribution protocol and achieve twin-field-type two-photon interference through post-matching phase-correlated single-photon interference events. We exploit the non-interference mode as the code mode to highly tolerate interference errors, and the two-photon interference naturally removes the intensity and probability constraint. Therefore, our protocol can transcend the abovementioned limitations while breaking the secret key capacity of repeaterless quantum key distribution. Simulations show that for a four-user networks, under which each node with fixed system parameters can dynamically switch different attenuation links, the key rates of our protocol for all six links can either exceed or approach the secret key capacity. However, the key rates of all links are lower than the key capacity when using phase-matching type protocols. Additionally, four of the links could not extract the key when using sending-or-not-sending type protocols. We anticipate that our protocol can facilitate the development of practical and efficient quantum networks.

相關內容

When analysing Quantum Key Distribution (QKD) protocols several metrics can be determined, but one of the most important is the Secret Key Rate. The Secret Key Rate is the number of bits per transmission that result in being part of a Secret Key between two parties. There are equations that give the Secret Key Rate, for example, for the BB84 protocol, equation 52 from [1, p.1032] gives the Secret Key Rate for a given Quantum Bit Error Rate (QBER). However, the analysis leading to equations such as these often rely on an Asymptotic approach, where it is assumed that an infinite number of transmissions are sent between the two communicating parties (henceforth denoted as Alice and Bob). In a practical implementation this is obviously impossible. Moreover, some QKD protocols belong to a category called Asymmetric protocols, for which it is significantly more difficult to perform such an analysis. As such, there is currently a lot of investigation into a different approach called the Finite-key regime. Work by Bunandar et al. [2] has produced code that used Semi-Definite Programming to produce lower bounds on the Secret Key Rate of even Asymmetric protocols. Our work looks at devising a novel QKD protocol taking inspiration from both the 3-state version of BB84 [3], and the Twin-Field protocol [4], and then using this code to perform analysis of the new protocol.

The new variant of measurement-device-independent quantum key distribution (MDI-QKD), called asynchronous MDI-QKD or mode-pairing MDI-QKD, offers similar repeater-like rate-loss scaling but has the advantage of simple technology implementation by exploiting an innovative post-measurement pairing technique. We herein present an evaluation of the practical aspects of decoy-state asynchronous MDI-QKD. To determine its effectiveness, we analyze the optimal method of decoy-state calculation and examine the impact of asymmetrical channels and multi-user networks. Our simulations show that, under realistic conditions, aynchronous MDI-QKD can furnish the highest key rate with MDI security as compared to other QKD protocols over distances ranging from 50 km to 480 km. At fiber distances of 50 km and 100 km, the key rates attain 6.02 Mbps and 2.29 Mbps respectively, which are sufficient to facilitate real-time one-time-pad video encryption. Our findings indicate that experimental implementation of asynchronous MDI-QKD in intercity networks can be both practical and efficient.

This paper presents some elements of a new approach to construction of Br\`{e}gman relative entropies over nonreflexive Banach spaces, based on nonlinear mappings into reflexive Banach spaces. We apply it to derive a new family of Br\`{e}gman relative entropies over preduals of any W$^*$-algebras and of semifinite JBW-algebras, induced using the Mazur maps into corresponding noncommutative and nonassociative $L_p$ spaces. We prove generalised pythagorean theorem and norm-to-norm continuity of the corresponding entropic projections, as well as H\"{o}lder continuity of the nonassociative Mazur map on positive parts of unit balls. We also discuss the possibility of extension of these results to base normed spaces in spectral duality, pointing to an open problem of construction of $L_p$ spaces over the corresponding order unit spaces.

Machine learning models are vulnerable to adversarial perturbations, and a thought-provoking paper by Bubeck and Sellke has analyzed this phenomenon through the lens of over-parameterization: interpolating smoothly the data requires significantly more parameters than simply memorizing it. However, this "universal" law provides only a necessary condition for robustness, and it is unable to discriminate between models. In this paper, we address these gaps by focusing on empirical risk minimization in two prototypical settings, namely, random features and the neural tangent kernel (NTK). We prove that, for random features, the model is not robust for any degree of over-parameterization, even when the necessary condition coming from the universal law of robustness is satisfied. In contrast, for even activations, the NTK model meets the universal lower bound, and it is robust as soon as the necessary condition on over-parameterization is fulfilled. This also addresses a conjecture in prior work by Bubeck, Li and Nagaraj. Our analysis decouples the effect of the kernel of the model from an "interaction matrix", which describes the interaction with the test data and captures the effect of the activation. Our theoretical results are corroborated by numerical evidence on both synthetic and standard datasets (MNIST, CIFAR-10).

Adversarial attacks represent a security threat to machine learning based automatic speech recognition (ASR) systems. To prevent such attacks we propose an adversarial example detection strategy applicable to any ASR system that predicts a probability distribution over output tokens in each time step. We measure a set of characteristics of this distribution: the median, maximum, and minimum over the output probabilities, the entropy, and the Jensen-Shannon divergence of the distributions of subsequent time steps. Then, we fit a Gaussian distribution to the characteristics observed for benign data. By computing the likelihood of incoming new audio we can distinguish malicious inputs from samples from clean data with an area under the receiving operator characteristic (AUROC) higher than 0.99, which drops to 0.98 for less-quality audio. To assess the robustness of our method we build adaptive attacks. This reduces the AUROC to 0.96 but results in more noisy adversarial clips.

Complexity theory typically focuses on the difficulty of solving computational problems using classical inputs and outputs, even with a quantum computer. In the quantum world, it is natural to apply a different notion of complexity, namely the complexity of synthesizing quantum states. We investigate a state-synthesizing counterpart of the class NP, referred to as stateQMA, which is concerned with preparing certain quantum states through a polynomial-time quantum verifier with the aid of a single quantum message from an all-powerful but untrusted prover. This is a subclass of the class stateQIP recently introduced by Rosenthal and Yuen (ITCS 2022), which permits polynomially many interactions between the prover and the verifier. Our main result consists of error reduction of this class and its variants with an exponentially small gap or a bounded space, as well as how this class relates to other fundamental state synthesizing classes, i.e., states generated by uniform polynomial-time quantum circuits (stateBQP) and space-uniform polynomial-space quantum circuits (statePSPACE). Additionally, we demonstrate that stateQCMA is closed under perfect completeness. Our proof techniques are based on the quantum singular value transformation introduced by Gily\'en, Su, Low, and Wiebe (STOC 2019), and its adaption to achieve exponential precision with a bounded space.

Recently, diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks. A typical DPM framework includes a forward process that gradually diffuses the data distribution and a reverse process that recovers the data distribution from time-dependent data scores. In this work, we observe that the stochastic reverse process of data scores is a martingale, from which concentration bounds and the optional stopping theorem for data scores can be derived. Then, we discover a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can consequently be increased. We provide general calibration guidelines under various model parametrizations. Our calibration method is performed only once and the resulting models can be used repeatedly for sampling. We conduct experiments on multiple datasets to empirically validate our proposal. Our code is at //github.com/thudzj/Calibrated-DPMs.

Platooning technologies enable trucks to drive cooperatively and automatically, which bring benefits including less fuel consumption, more road capacity and safety. In order to establish trust during dynamic platoon formation, ensure vehicular data integrity, and guard platoons against potential attackers, it is pivotal to verify any given vehicle's identity information before granting it access to join a platoon. To address this concern in dynamic truck platooning, we present a novel location-aware and privacy-preserving verification protocol based on zero-knowledge proof and permissioned blockchain. By performing the verification process within the spatially-local area defined by a given platoon, our system can provide lower latency and communication overhead compared to a location-agnostic blockchain system. We prototype the proposed system and perform benchmark tests on the Hyperledger platform. The experimental results show that our system is suitable for real-world truck platooning.

With rapid technological growth, automatic pronunciation assessment has transitioned toward systems that evaluate pronunciation in various aspects, such as fluency and stress. However, despite the highly imbalanced score labels within each aspect, existing studies have rarely tackled the data imbalance problem. In this paper, we suggest a novel loss function, score-balanced loss, to address the problem caused by uneven data, such as bias toward the majority scores. As a re-weighting approach, we assign higher costs when the predicted score is of the minority class, thus, guiding the model to gain positive feedback for sparse score prediction. Specifically, we design two weighting factors by leveraging the concept of an effective number of samples and using the ranks of scores. We evaluate our method on the speechocean762 dataset, which has noticeably imbalanced scores for several aspects. Improved results particularly on such uneven aspects prove the effectiveness of our method.

Anycast messaging (i.e., sending a message to an unspecified receiver) has long been neglected by the anonymous communication community. An anonymous anycast prevents senders from learning who the receiver of their message is, allowing for greater privacy in areas such as political activism and whistleblowing. While there have been some protocol ideas proposed, formal treatment of the problem is absent. Formal definitions of what constitutes anonymous anycast and privacy in this context are however a requirement for constructing protocols with provable guarantees. In this work, we define the anycast functionality and use a game-based approach to formalize its privacy and security goals. We further propose Panini, the first anonymous anycast protocol that only requires readily available infrastructure. We show that Panini allows the actual receiver of the anycast message to remain anonymous, even in the presence of an honest but curious sender. In an empirical evaluation, we find that Panini adds only minimal overhead over regular unicast: Sending a message anonymously to one of eight possible receivers results in an end-to-end latency of 0.76s.

北京阿比特科技有限公司