亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a vehicle-independent, non-intrusive, and light monitoring system for accurately measuring fuel consumption in road vehicles from longitudinal speed and acceleration derived continuously in time from GNSS and IMU sensors mounted inside the vehicle. In parallel to boosting the transition to zero-carbon cars, there is an increasing interest in low-cost instruments for precise measurement of the environmental impact of the many internal combustion engine vehicles still in circulation. The main contribution of this work is the design and comparison of two innovative black-box algorithms, one based on a reduced complexity physics modeling while the other relying on a feedforward neural network for black-box fuel consumption estimation using only velocity and acceleration measurements. Based on suitable metrics, the developed algorithms outperform the state of the art best approach, both in the instantaneous and in the integral fuel consumption estimation, with errors smaller than 1\% with respect to the fuel flow ground truth. The data used for model identification, testing, and experimental validation is composed of GNSS velocity and IMU acceleration measurements collected during several trips using a diesel fuel vehicle on different roads, in different seasons, and with varying numbers of passengers. Compared to built-in vehicle monitoring systems, this methodology is not customized, uses off-the-shelf sensors, and is based on two simple algorithms that have been validated offline and could be easily implemented in a real-time environment.

相關內容

This paper focuses on the frozen set design for precoded polar codes decoded by the successive cancellation list (SCL) algorithm. We propose a novel frozen set design method, whose computational complexity is low due to the use of analytical bounds and constrained frozen set structure. We derive new bounds based on the recently published complexity analysis of SCL with near maximum-likelihood (ML) performance. To predict the ML performance, we employ the state-of-the-art bounds relying on the code weight distribution. The bounds and constrained frozen set structure are incorporated into the genetic algorithm to generate optimized frozen sets with low complexity. Our simulation results show that the constructed precoded polar codes of length 512 have a superior frame error rate (FER) performance compared to the state-of-the-art codes under SCL decoding with various list sizes.

This paper presents an optimisation-based approach for an obstacle avoidance problem within an autonomous vehicle racing context. Our control regime leverages online reachability analysis and sensor data to compute the maximal safe traversable region that an agent can traverse within the environment. The idea is to first compute a non-convex safe region, which then can be convexified via a novel coupled separating hyperplane algorithm. This derived safe area is then used to formulate a nonlinear model-predictive control problem that seeks to find an optimal and safe driving trajectory. We evaluate the proposed approach through a series of diverse experiments and assess the runtime requirements of our proposed approach through an analysis of the effects of a set of varying optimisation objectives for generating these coupled hyperplanes.

Our objective in this paper is to estimate spine curvature in DXA scans. To this end we first train a neural network to predict the middle spine curve in the scan, and then use an integral-based method to determine the curvature along the spine curve. We use the curvature to compare to the standard angle scoliosis measure obtained using the DXA Scoliosis Method (DSM). The performance improves over the prior work of Jamaludin et al. 2018. We show that the maximum curvature can be used as a scoring function for ordering the severity of spinal deformation.

We propose a fixed-lag smoother-based sensor fusion architecture to leverage the complementary benefits of range-based sensors and visual-inertial odometry (VIO) for localization. We use two fixed-lag smoothers (FLS) to decouple accurate state estimation and high-rate pose generation for closed-loop control. The first FLS combines ultrawideband (UWB)-based range measurements and VIO to estimate the robot trajectory and any systematic biases that affect the range measurements in cluttered environments. The second FLS estimates smooth corrections to VIO to generate pose estimates at a high rate for online control. The proposed method is lightweight and can run on a computationally constrained micro-aerial vehicle (MAV). We validate our approach through closed-loop flight tests involving dynamic trajectories in multiple real-world cluttered indoor environments. Our method achieves decimeter-to-sub-decimeter-level positioning accuracy using off-the-shelf sensors and decimeter-level tracking accuracy with minimally-tuned open-source controllers.

The design of experiments involves a compromise between covariate balance and robustness. This paper provides a formalization of this trade-off and describes an experimental design that allows experimenters to navigate it. The design is specified by a robustness parameter that bounds the worst-case mean squared error of an estimator of the average treatment effect. Subject to the experimenter's desired level of robustness, the design aims to simultaneously balance all linear functions of potentially many covariates. Less robustness allows for more balance. We show that the mean squared error of the estimator is bounded in finite samples by the minimum of the loss function of an implicit ridge regression of the potential outcomes on the covariates. Asymptotically, the design perfectly balances all linear functions of a growing number of covariates with a diminishing reduction in robustness, effectively allowing experimenters to escape the compromise between balance and robustness in large samples. Finally, we describe conditions that ensure asymptotic normality and provide a conservative variance estimator, which facilitate the construction of asymptotically valid confidence intervals.

Advancements in LiDAR technology have led to more cost-effective production while simultaneously improving precision and resolution. As a result, LiDAR has become integral to vehicle localization, achieving centimeter-level accuracy through techniques like Normal Distributions Transform (NDT) and other advanced 3D registration algorithms. Nonetheless, these approaches are reliant on high-definition 3D point cloud maps, the creation of which involves significant expenditure. When such maps are unavailable or lack sufficient features for 3D registration algorithms, localization accuracy diminishes, posing a risk to road safety. To address this, we proposed to use LiDAR-equipped roadside unit and Vehicle-to-Infrastructure (V2I) communication to accurately estimate the connected autonomous vehicle's position and help the vehicle when its self-localization is not accurate enough. Our simulation results indicate that this method outperforms traditional NDT scan matching-based approaches in terms of localization accuracy.

In oriented object detection, current representations of oriented bounding boxes (OBBs) often suffer from boundary discontinuity problem. Methods of designing continuous regression losses do not essentially solve this problem. Although Gaussian bounding box (GBB) representation avoids this problem, directly regressing GBB is susceptible to numerical instability. We propose linear GBB (LGBB), a novel OBB representation. By linearly transforming the elements of GBB, LGBB avoids the boundary discontinuity problem and has high numerical stability. In addition, existing convolution-based rotation-sensitive feature extraction methods only have local receptive fields, resulting in slow feature aggregation. We propose ring-shaped rotated convolution (RRC), which adaptively rotates feature maps to arbitrary orientations to extract rotation-sensitive features under a ring-shaped receptive field, rapidly aggregating features and contextual information. Experimental results demonstrate that LGBB and RRC achieve state-of-the-art performance. Furthermore, integrating LGBB and RRC into various models effectively improves detection accuracy.

Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.

Urban flood risk emerges from complex and nonlinear interactions among multiple features related to flood hazard, flood exposure, and social and physical vulnerabilities, along with the complex spatial flood dependence relationships. Existing approaches for characterizing urban flood risk, however, are primarily based on flood plain maps, focusing on a limited number of features, primarily hazard and exposure features, without consideration of feature interactions or the dependence relationships among spatial areas. To address this gap, this study presents an integrated urban flood-risk rating model based on a novel unsupervised graph deep learning model (called FloodRisk-Net). FloodRisk-Net is capable of capturing spatial dependence among areas and complex and nonlinear interactions among flood hazards and urban features for specifying emergent flood risk. Using data from multiple metropolitan statistical areas (MSAs) in the United States, the model characterizes their flood risk into six distinct city-specific levels. The model is interpretable and enables feature analysis of areas within each flood-risk level, allowing for the identification of the three archetypes shaping the highest flood risk within each MSA. Flood risk is found to be spatially distributed in a hierarchical structure within each MSA, where the core city disproportionately bears the highest flood risk. Multiple cities are found to have high overall flood-risk levels and low spatial inequality, indicating limited options for balancing urban development and flood-risk reduction. Relevant flood-risk reduction strategies are discussed considering ways that the highest flood risk and uneven spatial distribution of flood risk are formed.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司