亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most Machine Learning research evaluates the best solutions in terms of performance. However, in the race for the best performing model, many important aspects are often overlooked when, on the contrary, they should be carefully considered. In fact, sometimes the gaps in performance between different approaches are neglectable, whereas factors such as production costs, energy consumption, and carbon footprint must take into consideration. Large Language Models (LLMs) are extensively adopted to address NLP problems in academia and industry. In this work, we present a detailed quantitative comparison of LLM and traditional approaches (e.g. SVM) on the LexGLUE benchmark, which takes into account both performance (standard indices) and alternative metrics such as timing, power consumption and cost, in a word: the carbon-footprint. In our analysis, we considered the prototyping phase (model selection by training-validation-test iterations) and in-production phases separately, since they follow different implementation procedures and also require different resources. The results indicate that very often, the simplest algorithms achieve performance very close to that of large LLMs but with very low power consumption and lower resource demands. The results obtained could suggest companies to include additional evaluations in the choice of Machine Learning (ML) solutions.

相關內容

In recent years, power analysis has become widely used in applied sciences, with the increasing importance of the replicability issue. When distribution-free methods, such as Partial Least Squares (PLS)-based approaches, are considered, formulating power analysis turns out to be challenging. In this study, we introduce the methodological framework of a new procedure for performing power analysis when PLS-based methods are used. Data are simulated by the Monte Carlo method, assuming the null hypothesis of no effect is false and exploiting the latent structure estimated by PLS in the pilot data. In this way, the complex correlation data structure is explicitly considered in power analysis and sample size estimation. The paper offers insights into selecting statistical tests for the power analysis procedure, comparing accuracy-based tests and those based on continuous parameters estimated by PLS. Simulated and real datasets are investigated to show how the method works in practice.

Large-scale applications of Visual Place Recognition (VPR) require computationally efficient approaches. Further, a well-balanced combination of data-based and training-free approaches can decrease the required amount of training data and effort and can reduce the influence of distribution shifts between the training and application phases. This paper proposes a runtime and data-efficient hierarchical VPR pipeline that extends existing approaches and presents novel ideas. There are three main contributions: First, we propose Local Positional Graphs (LPG), a training-free and runtime-efficient approach to encode spatial context information of local image features. LPG can be combined with existing local feature detectors and descriptors and considerably improves the image-matching quality compared to existing techniques in our experiments. Second, we present Attentive Local SPED (ATLAS), an extension of our previous local features approach with an attention module that improves the feature quality while maintaining high data efficiency. The influence of the proposed modifications is evaluated in an extensive ablation study. Third, we present a hierarchical pipeline that exploits hyperdimensional computing to use the same local features as holistic HDC-descriptors for fast candidate selection and for candidate reranking. We combine all contributions in a runtime and data-efficient VPR pipeline that shows benefits over the state-of-the-art method Patch-NetVLAD on a large collection of standard place recognition datasets with 15$\%$ better performance in VPR accuracy, 54$\times$ faster feature comparison speed, and 55$\times$ less descriptor storage occupancy, making our method promising for real-world high-performance large-scale VPR in changing environments. Code will be made available with publication of this paper.

There are now many explainable AI methods for understanding the decisions of a machine learning model. Among these are those based on counterfactual reasoning, which involve simulating features changes and observing the impact on the prediction. This article proposes to view this simulation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.

The recent paper (IEEE Trans. IT 69, 1680) introduced an analytical method for calculating the channel capacity without the need for iteration. This method has certain limitations that restrict its applicability. Furthermore, the paper does not provide an explanation as to why the channel capacity can be solved analytically in this particular case. In order to broaden the scope of this method and address its limitations, we turn our attention to the reverse em-problem, proposed by Toyota (Information Geometry, 3, 1355 (2020)). This reverse em-problem involves iteratively applying the inverse map of the em iteration to calculate the channel capacity, which represents the maximum mutual information. However, several open problems remained unresolved in Toyota's work. To overcome these challenges, we formulate the reverse em-problem based on Bregman divergence and provide solutions to these open problems. Building upon these results, we transform the reverse em-problem into em-problems and derive a non-iterative formula for the reverse em-problem. This formula can be viewed as a generalization of the aforementioned analytical calculation method. Importantly, this derivation sheds light on the information geometrical structure underlying this special case. By effectively addressing the limitations of the previous analytical method and providing a deeper understanding of the underlying information geometrical structure, our work significantly expands the applicability of the proposed method for calculating the channel capacity without iteration.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under weak assumptions and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals, adding to the literature on confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time -- which provide valid inference at arbitrary stopping times and incur no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, enjoying finite-sample guarantees but not the aforementioned broad applicability of asymptotic confidence intervals. This work provides a definition for "asymptotic CSs" and a general recipe for deriving them. Asymptotic CSs forgo nonasymptotic validity for CLT-like versatility and (asymptotic) time-uniform guarantees. While the CLT approximates the distribution of a sample average by that of a Gaussian for a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration, we derive asymptotic CSs for the average treatment effect in observational studies (for which nonasymptotic bounds are essentially impossible to derive even in the fixed-time regime) as well as randomized experiments, enabling causal inference in sequential environments.

Within recent years, generative AI, such as large language models, has undergone rapid development. As these models become increasingly available to the public, concerns arise about perpetuating and amplifying harmful biases in applications. Gender stereotypes can be harmful and limiting for the individuals they target, whether they consist of misrepresentation or discrimination. Recognizing gender bias as a pervasive societal construct, this paper studies how to uncover and quantify the presence of gender biases in generative language models. In particular, we derive generative AI analogues of three well-known non-discrimination criteria from classification, namely independence, separation and sufficiency. To demonstrate these criteria in action, we design prompts for each of the criteria with a focus on occupational gender stereotype, specifically utilizing the medical test to introduce the ground truth in the generative AI context. Our results address the presence of occupational gender bias within such conversational language models.

Convolutional Neural Networks (CNNs) are nowadays the model of choice in Computer Vision, thanks to their ability to automatize the feature extraction process in visual tasks. However, the knowledge acquired during training is fully subsymbolic, and hence difficult to understand and explain to end users. In this paper, we propose a new technique called HOLMES (HOLonym-MEronym based Semantic inspection) that decomposes a label into a set of related concepts, and provides component-level explanations for an image classification model. Specifically, HOLMES leverages ontologies, web scraping and transfer learning to automatically construct meronym (parts)-based detectors for a given holonym (class). Then, it produces heatmaps at the meronym level and finally, by probing the holonym CNN with occluded images, it highlights the importance of each part on the classification output. Compared to state-of-the-art saliency methods, HOLMES takes a step further and provides information about both where and what the holonym CNN is looking at, without relying on densely annotated datasets and without forcing concepts to be associated to single computational units. Extensive experimental evaluation on different categories of objects (animals, tools and vehicles) shows the feasibility of our approach. On average, HOLMES explanations include at least two meronyms, and the ablation of a single meronym roughly halves the holonym model confidence. The resulting heatmaps were quantitatively evaluated using the deletion/insertion/preservation curves. All metrics were comparable to those achieved by GradCAM, while offering the advantage of further decomposing the heatmap in human-understandable concepts, thus highlighting both the relevance of meronyms to object classification, as well as HOLMES ability to capture it. The code is available at //github.com/FrancesC0de/HOLMES.

Systematic Literature Reviews (SLRs) have become the foundation of evidence-based studies, enabling researchers to identify, classify, and combine existing studies based on specific research questions. Conducting an SLR is largely a manual process. Over the previous years, researchers have made significant progress in automating certain phases of the SLR process, aiming to reduce the effort and time needed to carry out high-quality SLRs. However, there is still a lack of AI agent-based models that automate the entire SLR process. To this end, we introduce a novel multi-AI agent model designed to fully automate the process of conducting an SLR. By utilizing the capabilities of Large Language Models (LLMs), our proposed model streamlines the review process, enhancing efficiency and accuracy. The model operates through a user-friendly interface where researchers input their topic, and in response, the model generates a search string used to retrieve relevant academic papers. Subsequently, an inclusive and exclusive filtering process is applied, focusing on titles relevant to the specific research area. The model then autonomously summarizes the abstracts of these papers, retaining only those directly related to the field of study. In the final phase, the model conducts a thorough analysis of the selected papers concerning predefined research questions. We also evaluated the proposed model by sharing it with ten competent software engineering researchers for testing and analysis. The researchers expressed strong satisfaction with the proposed model and provided feedback for further improvement. The code for this project can be found on the GitHub repository at //github.com/GPT-Laboratory/SLR-automation.

The extrapolation capability of Large Language Models (LLMs) based on Rotary Position Embedding is currently a topic of considerable interest. The mainstream approach to addressing extrapolation with LLMs involves modifying RoPE by replacing 10000, the rotary base of $\theta_n={10000}^{-2n/d}$ in the original RoPE, with a larger value and providing longer fine-tuning text. In this work, we first observe that fine-tuning a RoPE-based LLM with either a smaller or larger base in pre-training context length could significantly enhance its extrapolation performance. After that, we propose \textbf{\textit{Scaling Laws of RoPE-based Extrapolation}}, a unified framework from the periodic perspective, to describe the relationship between the extrapolation performance and base value as well as tuning context length. In this process, we also explain the origin of the RoPE-based extrapolation issue by \textbf{\textit{critical dimension for extrapolation}}. Besides these observations and analyses, we achieve extrapolation up to 1 million context length within only 16K training length on LLaMA2 7B and 13B.

Surrogate modelling techniques have seen growing attention in recent years when applied to both modelling and optimisation of industrial design problems. These techniques are highly relevant when assessing the performance of a particular design carries a high cost, as the overall cost can be mitigated via the construction of a model to be queried in lieu of the available high-cost source. The construction of these models can sometimes employ other sources of information which are both cheaper and less accurate. The existence of these sources however poses the question of which sources should be used when constructing a model. Recent studies have attempted to characterise harmful data sources to guide practitioners in choosing when to ignore a certain source. These studies have done so in a synthetic setting, characterising sources using a large amount of data that is not available in practice. Some of these studies have also been shown to potentially suffer from bias in the benchmarks used in the analysis. In this study, we present a characterisation of harmful low-fidelity sources using only the limited data available to train a surrogate model. We employ recently developed benchmark filtering techniques to conduct a bias-free assessment, providing objectively varied benchmark suites of different sizes for future research. Analysing one of these benchmark suites with the technique known as Instance Space Analysis, we provide an intuitive visualisation of when a low-fidelity source should be used and use this analysis to provide guidelines that can be used in an applied industrial setting.

北京阿比特科技有限公司