This paper designs a servo control system based on sliding mode control for the shape control of elastic objects. In order to solve the effect of non-smooth and asymmetric control saturation, a Gaussian-based continuous differentiable asymmetric saturation function is used for this goal. The proposed detection approach runs in a highly real-time manner. Meanwhile, this paper uses sliding mode control to prove that the estimation stability of the deformation Jacobian matrix and the system stability of the controller are combined, which verifies the control stability of the closed-loop system including estimation. Besides, an integral sliding mode function is designed to avoid the need for second-order derivatives of variables, which enhances the robustness of the system in actual situations. Finally, the Lyapunov theory is used to prove the consistent final boundedness of all variables of the system.
This paper designs a simple, efficient and truthful mechanism to to elicit self-evaluations about items jointly owned by owners. A key application of this mechanism is to improve the peer review of large scientific conferences where a paper often has multiple authors and many authors have multiple papers. Our mechanism is designed to generate an entirely new source of review data truthfully elicited from paper owners, and can be used to augment the traditional approach of eliciting review data only from peer reviewers. Our approach starts by partitioning all submissions of a conference into disjoint blocks, each of which shares a common set of co-authors. We then elicit the ranking of the submissions from each author and employ isotonic regression to produce adjusted review scores that align with both the reported ranking and the raw review scores. Under certain conditions, truth-telling by all authors is a Nash equilibrium for any valid partition of the overlapping ownership sets. We prove that to ensure truthfulness for such isotonic regression based mechanisms, partitioning the authors into blocks and eliciting only ranking information independently from each block is necessary. This leave the optimization of block partition as the only room for maximizing the estimation efficiency of our mechanism, which is a computationally intractable optimization problem in general. Fortunately, we develop a nearly linear-time greedy algorithm that provably finds a performant partition with appealing robust approximation guarantees. Extensive experiments on both synthetic data and real-world conference review data demonstrate the effectiveness of this owner-assisted calibration mechanism.
This paper presents the design and implementation of a self-reconfigurable V-shape formation controller for multiple unmanned aerial vehicles (UAVs) navigating through narrow spaces in a dense obstacle environment. The selection of the V-shape formation is motivated by its maneuverability and visibility advantages. The main objective is to develop an effective formation control strategy that allows UAVs to autonomously adjust their positions to form the desired formation while navigating through obstacles. To achieve this, we propose a distributed behavior-based control algorithm that combines the behaviors designed for individual UAVs so that they together navigate the UAVs to their desired positions. The reconfiguration process is automatic, utilizing individual UAV sensing within the formation, allowing for dynamic adaptations such as opening/closing wings or merging into a straight line. Simulation results show that the self-reconfigurable V-shape formation offers adaptability and effectiveness for UAV formations in complex operational scenarios.
This paper focuses on text detoxification, i.e., automatically converting toxic text into non-toxic text. This task contributes to safer and more respectful online communication and can be considered a Text Style Transfer (TST) task, where the text style changes while its content is preserved. We present three approaches: knowledge transfer from a similar task, multi-task learning approach, combining sequence-to-sequence modeling with various toxicity classification tasks, and, delete and reconstruct approach. To support our research, we utilize a dataset provided by Dementieva et al.(2021), which contains multiple versions of detoxified texts corresponding to toxic texts. In our experiments, we selected the best variants through expert human annotators, creating a dataset where each toxic sentence is paired with a single, appropriate detoxified version. Additionally, we introduced a small Hindi parallel dataset, aligning with a part of the English dataset, suitable for evaluation purposes. Our results demonstrate that our approach effectively balances text detoxication while preserving the actual content and maintaining fluency.
This paper proposes an adaptive graph-based approach for multi-label image classification. Graph-based methods have been largely exploited in the field of multi-label classification, given their ability to model label correlations. Specifically, their effectiveness has been proven not only when considering a single domain but also when taking into account multiple domains. However, the topology of the used graph is not optimal as it is pre-defined heuristically. In addition, consecutive Graph Convolutional Network (GCN) aggregations tend to destroy the feature similarity. To overcome these issues, an architecture for learning the graph connectivity in an end-to-end fashion is introduced. This is done by integrating an attention-based mechanism and a similarity-preserving strategy. The proposed framework is then extended to multiple domains using an adversarial training scheme. Numerous experiments are reported on well-known single-domain and multi-domain benchmarks. The results demonstrate that our approach achieves competitive results in terms of mean Average Precision (mAP) and model size as compared to the state-of-the-art. The code will be made publicly available.
Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality. While some of these methods effectively address complex problems, they often depend heavily on inference-time obstacle detection and require additional equipment. Addressing these challenges, we present a method that, during inference time, simultaneously generates only reachable goals and plans motions that avoid obstacles, all from a single visual input. Central to our approach is the novel use of a collision-avoiding diffusion kernel for training. Through evaluations against behavior-cloning and classical diffusion models, our framework has proven its robustness. It is particularly effective in multi-modal environments, navigating toward goals and avoiding unreachable ones blocked by obstacles, while ensuring collision avoidance. Project Website: //sites.google.com/view/denoising-heat-inspired
Robot learning of manipulation skills is hindered by the scarcity of diverse, unbiased datasets. While curated datasets can help, challenges remain in generalizability and real-world transfer. Meanwhile, large-scale "in-the-wild" video datasets have driven progress in computer vision through self-supervised techniques. Translating this to robotics, recent works have explored learning manipulation skills by passively watching abundant videos sourced online. Showing promising results, such video-based learning paradigms provide scalable supervision while reducing dataset bias. This survey reviews foundations such as video feature representation learning techniques, object affordance understanding, 3D hand/body modeling, and large-scale robot resources, as well as emerging techniques for acquiring robot manipulation skills from uncontrolled video demonstrations. We discuss how learning only from observing large-scale human videos can enhance generalization and sample efficiency for robotic manipulation. The survey summarizes video-based learning approaches, analyses their benefits over standard datasets, survey metrics, and benchmarks, and discusses open challenges and future directions in this nascent domain at the intersection of computer vision, natural language processing, and robot learning.
This paper proposes a speech rhythm-based method for speaker embeddings to model phoneme duration using a few utterances by the target speaker. Speech rhythm is one of the essential factors among speaker characteristics, along with acoustic features such as F0, for reproducing individual utterances in speech synthesis. A novel feature of the proposed method is the rhythm-based embeddings extracted from phonemes and their durations, which are known to be related to speaking rhythm. They are extracted with a speaker identification model similar to the conventional spectral feature-based one. We conducted three experiments, speaker embeddings generation, speech synthesis with generated embeddings, and embedding space analysis, to evaluate the performance. The proposed method demonstrated a moderate speaker identification performance (15.2% EER), even with only phonemes and their duration information. The objective and subjective evaluation results demonstrated that the proposed method can synthesize speech with speech rhythm closer to the target speaker than the conventional method. We also visualized the embeddings to evaluate the relationship between the distance of the embeddings and the perceptual similarity. The visualization of the embedding space and the relation analysis between the closeness indicated that the distribution of embeddings reflects the subjective and objective similarity.
Dense 3D reconstruction has many applications in automated driving including automated annotation validation, multimodal data augmentation, providing ground truth annotations for systems lacking LiDAR, as well as enhancing auto-labeling accuracy. LiDAR provides highly accurate but sparse depth, whereas camera images enable estimation of dense depth but noisy particularly at long ranges. In this paper, we harness the strengths of both sensors and propose a multimodal 3D scene reconstruction using a framework combining neural implicit surfaces and radiance fields. In particular, our method estimates dense and accurate 3D structures and creates an implicit map representation based on signed distance fields, which can be further rendered into RGB images, and depth maps. A mesh can be extracted from the learned signed distance field and culled based on occlusion. Dynamic objects are efficiently filtered on the fly during sampling using 3D object detection models. We demonstrate qualitative and quantitative results on challenging automotive scenes.
This paper tackles the problem of motion deblurring of dynamic scenes. Although end-to-end fully convolutional designs have recently advanced the state-of-the-art in non-uniform motion deblurring, their performance-complexity trade-off is still sub-optimal. Most existing approaches achieve a large receptive field by increasing the number of generic convolution layers and kernel size. In this work, we propose a pixel adaptive and feature attentive design for handling large blur variations across different spatial locations and process each test image adaptively. We design a content-aware global-local filtering module that significantly improves performance by considering not only global dependencies but also by dynamically exploiting neighboring pixel information. We further introduce a pixel-adaptive non-uniform sampling strategy that implicitly discovers the difficult-to-restore regions present in the image and, in turn, performs fine-grained refinement in a progressive manner. Extensive qualitative and quantitative comparisons with prior art on deblurring benchmarks demonstrate that our approach performs favorably against the state-of-the-art deblurring algorithms.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.