亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate additive Schwarz methods for semilinear elliptic problems with convex energy functionals, which have wide scientific applications. A key observation is that the convergence rates of both one- and two-level additive Schwarz methods have bounds independent of the nonlinear term in the problem. That is, the convergence rates do not deteriorate by the presence of nonlinearity, so that solving a semilinear problem requires no more iterations than a linear problem. Moreover, the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. Numerical results are provided to support our theoretical findings.

相關內容

We have developed an efficient and unconditionally energy-stable method for simulating droplet formation dynamics. Our approach involves a novel time-marching scheme based on the scalar auxiliary variable technique, specifically designed for solving the Cahn-Hilliard-Navier-Stokes phase field model with variable density and viscosity. We have successfully applied this method to simulate droplet formation in scenarios where a Newtonian fluid is injected through a vertical tube into another immiscible Newtonian fluid. To tackle the challenges posed by nonhomogeneous Dirichlet boundary conditions at the tube entrance, we have introduced additional nonlocal auxiliary variables and associated ordinary differential equations. These additions effectively eliminate the influence of boundary terms. Moreover, we have incorporated stabilization terms into the scheme to enhance its numerical effectiveness. Notably, our resulting scheme is fully decoupled, requiring the solution of only linear systems at each time step. We have also demonstrated the energy decaying property of the scheme, with suitable modifications. To assess the accuracy and stability of our algorithm, we have conducted extensive numerical simulations. Additionally, we have examined the dynamics of droplet formation and explored the impact of dimensionless parameters on the process. Overall, our work presents a refined method for simulating droplet formation dynamics, offering improved efficiency, energy stability, and accuracy.

We present a graph-based discretization method for solving hyperbolic systems of conservation laws using discontinuous finite elements. The method is based on the convex limiting technique technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211--A3239, 2018). As such, these methods are mathematically guaranteed to be invariant-set preserving and to satisfy discrete pointwise entropy inequalities. In this paper we extend the theory for the specific case of discontinuous finite elements, incorporating the effect of boundary conditions into the formulation. From a practical point of view, the implementation of these methods is algebraic, meaning, that they operate directly on the stencil of the spatial discretization. This first paper in a sequence of two papers introduces and verifies essential building blocks for the convex limiting procedure using discontinuous Galerkin discretizations. In particular, we discuss a minimally stabilized high-order discontinuous Galerkin method that exhibits optimal convergence rates comparable to linear stabilization techniques for cell-based methods. In addition, we discuss a proper choice of local bounds for the convex limiting procedure. A follow-up contribution will focus on the high-performance implementation, benchmarking and verification of the method. We verify convergence rates on a sequence of one- and two-dimensional tests with differing regularity. In particular, we obtain optimal convergence rates for single rarefaction waves. We also propose a simple test in order to verify the implementation of boundary conditions and their convergence rates.

Researchers would often like to leverage data from a collection of sources (e.g., primary studies in a meta-analysis) to estimate causal effects in a target population of interest. However, traditional meta-analytic methods do not produce causally interpretable estimates for a well-defined target population. In this paper, we present the CausalMetaR R package, which implements efficient and robust methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We describe the key features of the package and demonstrate how to use the package through an example.

We propose a Bernoulli-barycentric rational matrix collocation method for two-dimensional evolutionary partial differential equations (PDEs) with variable coefficients that combines Bernoulli polynomials with barycentric rational interpolations in time and space, respectively. The theoretical accuracy $O\left((2\pi)^{-N}+h_x^{d_x-1}+h_y^{d_y-1}\right)$ of our numerical scheme is proven, where $N$ is the number of basis functions in time, $h_x$ and $h_y$ are the grid sizes in the $x$, $y$-directions, respectively, and $0\leq d_x\leq \frac{b-a}{h_x},~0\leq d_y\leq\frac{d-c}{h_y}$. For the efficient solution of the relevant linear system arising from the discretizations, we introduce a class of dimension expanded preconditioners that take the advantage of structural properties of the coefficient matrices, and we present a theoretical analysis of eigenvalue distributions of the preconditioned matrices. The effectiveness of our proposed method and preconditioners are studied for solving some real-world examples represented by the heat conduction equation, the advection-diffusion equation, the wave equation and telegraph equations.

We propose a novel class of temporal high-order parametric finite element methods for solving a wide range of geometric flows of curves and surfaces. By incorporating the backward differentiation formulae (BDF) for time discretization into the BGN formulation, originally proposed by Barrett, Garcke, and N\"urnberg (J. Comput. Phys., 222 (2007), pp.~441--467), we successfully develop high-order BGN/BDF$k$ schemes. The proposed BGN/BDF$k$ schemes not only retain almost all the advantages of the classical first-order BGN scheme such as computational efficiency and good mesh quality, but also exhibit the desired $k$th-order temporal accuracy in terms of shape metrics, ranging from second-order to fourth-order accuracy. Furthermore, we validate the performance of our proposed BGN/BDF$k$ schemes through extensive numerical examples, demonstrating their high-order temporal accuracy for various types of geometric flows while maintaining good mesh quality throughout the evolution.

We propose the first steps in the development of a tool to automate the translation of Redex models into a (hopefully) semantically equivalent model in Coq, and to provide tactics to help in the certification of fundamental properties of such models. The work is heavily based on a model of Redex's semantics developed by Klein et al. By means of a simple generalization of the matching problem in Redex, we obtain an algorithm suitable for its mechanization in Coq, for which we prove its soundness properties and its correspondence with the original solution proposed by Klein et al. In the process, we also adequate some parts of our mechanization to better prepare it for the future inclusion of Redex features absent in the present model, like its Kleene-star operator. Finally, we discuss future avenues of development that are enabled by this work.

Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan-Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables. We also obtain the convergence rate and asymptotic normality for the two estimators, while showing the sparsity property for the censored adaptive LASSO expectile estimator. A numerical study using Monte Carlo simulations confirms the theoretical results and demonstrates the competitive performance of the two proposed estimators. The usefulness of these estimators is illustrated by applying them to three survival data sets.

We propose a new class of finite element approximations to ideal compressible magnetohydrody- namic equations in smooth regime. Following variational approximations developed for fluid models in the last decade, our discretizations are built via a discrete variational principle mimicking the continuous Euler-Poincare principle, and to further exploit the geometrical structure of the prob- lem, vector fields are represented by their action as Lie derivatives on differential forms of any degree. The resulting semi-discrete approximations are shown to conserve the total mass, entropy and energy of the solutions for a wide class of finite element approximations. In addition, the divergence-free nature of the magnetic field is preserved in a pointwise sense and a time discretiza- tion is proposed, preserving those invariants and giving a reversible scheme at the fully discrete level. Numerical simulations are conducted to verify the accuracy of our approach and its ability to preserve the invariants for several test problems.

We explore a linear inhomogeneous elasticity equation with random Lam\'e parameters. The latter are parameterized by a countably infinite number of terms in separated expansions. The main aim of this work is to estimate expected values (considered as an infinite dimensional integral on the parametric space corresponding to the random coefficients) of linear functionals acting on the solution of the elasticity equation. To achieve this, the expansions of the random parameters are truncated, a high-order quasi-Monte Carlo (QMC) is combined with a sparse grid approach to approximate the high dimensional integral, and a Galerkin finite element method (FEM) is introduced to approximate the solution of the elasticity equation over the physical domain. The error estimates from (1) truncating the infinite expansion, (2) the Galerkin FEM, and (3) the QMC sparse grid quadrature rule are all studied. For this purpose, we show certain required regularity properties of the continuous solution with respect to both the parametric and physical variables. To achieve our theoretical regularity and convergence results, some reasonable assumptions on the expansions of the random coefficients are imposed. Finally, some numerical results are delivered.

The Immersed Boundary (IB) method of Peskin (J. Comput. Phys., 1977) is useful for problems involving fluid-structure interactions or complex geometries. By making use of a regular Cartesian grid that is independent of the geometry, the IB framework yields a robust numerical scheme that can efficiently handle immersed deformable structures. Additionally, the IB method has been adapted to problems with prescribed motion and other PDEs with given boundary data. IB methods for these problems traditionally involve penalty forces which only approximately satisfy boundary conditions, or they are formulated as constraint problems. In the latter approach, one must find the unknown forces by solving an equation that corresponds to a poorly conditioned first-kind integral equation. This operation can require a large number of iterations of a Krylov method, and since a time-dependent problem requires this solve at each time step, this method can be prohibitively inefficient without preconditioning. In this work, we introduce a new, well-conditioned IB formulation for boundary value problems, which we call the Immersed Boundary Double Layer (IBDL) method. We present the method as it applies to Poisson and Helmholtz problems to demonstrate its efficiency over the original constraint method. In this double layer formulation, the equation for the unknown boundary distribution corresponds to a well-conditioned second-kind integral equation that can be solved efficiently with a small number of iterations of a Krylov method. Furthermore, the iteration count is independent of both the mesh size and immersed boundary point spacing. The method converges away from the boundary, and when combined with a local interpolation, it converges in the entire PDE domain. Additionally, while the original constraint method applies only to Dirichlet problems, the IBDL formulation can also be used for Neumann conditions.

北京阿比特科技有限公司