This study devised a physics-informed neural network (PINN) framework to solve the wave equation for acoustic resonance analysis. The proposed analytical model, ResoNet, minimizes the loss function for periodic solutions and conventional PINN loss functions, thereby effectively using the function approximation capability of neural networks while performing resonance analysis. Additionally, it can be easily applied to inverse problems. The resonance in a one-dimensional acoustic tube, and the effectiveness of the proposed method was validated through the forward and inverse analyses of the wave equation with energy-loss terms. In the forward analysis, the applicability of PINN to the resonance problem was evaluated via comparison with the finite-difference method. The inverse analysis, which included identifying the energy loss term in the wave equation and design optimization of the acoustic tube, was performed with good accuracy.
We present here the classical Schwarz method with a time domain decomposition applied to unconstrained parabolic optimal control problems. Unlike Dirichlet-Neumann and Neumann-Neumann algorithms, we find different properties based on the forward-backward structure of the optimality system. Variants can be found using only Dirichlet and Neumann transmission conditions. Some of these variants are only good smoothers, while others could lead to efficient solvers.
Data-driven discovery of partial differential equations (PDEs) has emerged as a promising approach for deriving governing physics when domain knowledge about observed data is limited. Despite recent progress, the identification of governing equations and their parametric dependencies using conventional information criteria remains challenging in noisy situations, as the criteria tend to select overly complex PDEs. In this paper, we introduce an extension of the uncertainty-penalized Bayesian information criterion (UBIC), which is adapted to solve parametric PDE discovery problems efficiently without requiring computationally expensive PDE simulations. This extended UBIC uses quantified PDE uncertainty over different temporal or spatial points to prevent overfitting in model selection. The UBIC is computed with data transformation based on power spectral densities to discover the governing parametric PDE that truly captures qualitative features in frequency space with a few significant terms and their parametric dependencies (i.e., the varying PDE coefficients), evaluated with confidence intervals. Numerical experiments on canonical PDEs demonstrate that our extended UBIC can identify the true number of terms and their varying coefficients accurately, even in the presence of noise. The code is available at \url{//github.com/Pongpisit-Thanasutives/parametric-discovery}.
In this paper we demonstrate both theoretically as well as numerically that neural networks can detect model-free static arbitrage opportunities whenever the market admits some. Due to the use of neural networks, our method can be applied to financial markets with a high number of traded securities and ensures almost immediate execution of the corresponding trading strategies. To demonstrate its tractability, effectiveness, and robustness we provide examples using real financial data. From a technical point of view, we prove that a single neural network can approximately solve a class of convex semi-infinite programs, which is the key result in order to derive our theoretical results that neural networks can detect model-free static arbitrage strategies whenever the financial market admits such opportunities.
We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover the true state, which is the solution of the PDE, from the biased data. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from sparse information for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only < 1\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.
This paper presents a scalable physics-based block preconditioner for mixed-dimensional models in beam-solid interaction and their application in engineering. In particular, it studies the linear systems arising from a regularized mortar-type approach for embedding geometrically exact beams into solid continua. Due to the lack of block diagonal dominance of the arising 2 x 2 block system, an approximate block factorization preconditioner is used. It exploits the sparsity structure of the beam sub-block to construct a sparse approximate inverse, which is then not only used to explicitly form an approximation of the Schur complement, but also acts as a smoother within the prediction step of the arising SIMPLE-type preconditioner. The correction step utilizes an algebraic multigrid method. Although, for now, the beam sub-block is tackled by a one-level method only, the multi-level nature of the computationally demanding correction step delivers a scalable preconditioner in practice. In numerical test cases, the influence of different algorithmic parameters on the quality of the sparse approximate inverse is studied and the weak scaling behavior of the proposed preconditioner on up to 1000 MPI ranks is demonstrated, before the proposed preconditioner is finally applied for the analysis of steel-reinforced concrete structures in civil engineering.
Entanglement-assisted classical communication (EACC) aims to enhance communication systems using entanglement as an additional resource. However, there is a scarcity of explicit protocols designed for finite transmission scenarios, which presents a challenge for real-world implementation. In response we introduce a new EACC scheme capable of correcting a fixed number of erasures/errors. It can be adjusted to the available amount of entanglement and sends classical information over a quantum channel. We establish a general framework to accomplish such a task by reducing it to a classical problem. Comparing with specific bounds we identify optimal parameter ranges. The scheme requires only the implementation of super-dense coding which has been demonstrated successfully in experiments. Furthermore, our results shows that an adaptable entanglement use confers a communication advantage. Overall, our work sheds light on how entanglement can elevate various finite-length communication protocols, opening new avenues for exploration in the field.
A random walk-based method is proposed to efficiently compute the solution of a large class of fractional in time linear systems of differential equations (linear F-ODE systems), along with the derivatives with respect to the system parameters. Such a method is unbiased and unconditionally stable, and can therefore be used to provide an unbiased estimation of individual entries of the solution, or the full solution. By using stochastic differentiation techniques, it can be used as well to provide unbiased estimators of the sensitivities of the solution with respect to the problem parameters without any additional computational cost. The time complexity of the algorithm is discussed here, along with suitable variance bounds, which prove in practice the convergence of the algorithm. Finally, several test cases were run to assess the validity of the algorithm.
We propose a novel finite element-based physics-informed operator learning framework that allows for predicting spatiotemporal dynamics governed by partial differential equations (PDEs). The proposed framework employs a loss function inspired by the finite element method (FEM) with the implicit Euler time integration scheme. A transient thermal conduction problem is considered to benchmark the performance. The proposed operator learning framework takes a temperature field at the current time step as input and predicts a temperature field at the next time step. The Galerkin discretized weak formulation of the heat equation is employed to incorporate physics into the loss function, which is coined finite operator learning (FOL). Upon training, the networks successfully predict the temperature evolution over time for any initial temperature field at high accuracy compared to the FEM solution. The framework is also confirmed to be applicable to a heterogeneous thermal conductivity and arbitrary geometry. The advantages of FOL can be summarized as follows: First, the training is performed in an unsupervised manner, avoiding the need for a large data set prepared from costly simulations or experiments. Instead, random temperature patterns generated by the Gaussian random process and the Fourier series, combined with constant temperature fields, are used as training data to cover possible temperature cases. Second, shape functions and backward difference approximation are exploited for the domain discretization, resulting in a purely algebraic equation. This enhances training efficiency, as one avoids time-consuming automatic differentiation when optimizing weights and biases while accepting possible discretization errors. Finally, thanks to the interpolation power of FEM, any arbitrary geometry can be handled with FOL, which is crucial to addressing various engineering application scenarios.
The optimization of yields in multi-reactor systems, which are advanced tools in heterogeneous catalysis research, presents a significant challenge due to hierarchical technical constraints. To this respect, this work introduces a novel approach called process-constrained batch Bayesian optimization via Thompson sampling (pc-BO-TS) and its generalized hierarchical extension (hpc-BO-TS). This method, tailored for the efficiency demands in multi-reactor systems, integrates experimental constraints and balances between exploration and exploitation in a sequential batch optimization strategy. It offers an improvement over other Bayesian optimization methods. The performance of pc-BO-TS and hpc-BO-TS is validated in synthetic cases as well as in a realistic scenario based on data obtained from high-throughput experiments done on a multi-reactor system available in the REALCAT platform. The proposed methods often outperform other sequential Bayesian optimizations and existing process-constrained batch Bayesian optimization methods. This work proposes a novel approach to optimize the yield of a reaction in a multi-reactor system, marking a significant step forward in digital catalysis and generally in optimization methods for chemical engineering.
This paper presents a scalable physics-based block preconditioner for mixed-dimensional models in beam-solid interaction and their application in engineering. In particular, it studies the linear systems arising from a regularized mortar-type approach for embedding geometrically exact beams into solid continua. Due to the lack of block diagonal dominance of the arising 2 x 2 block system, an approximate block factorization preconditioner is used. It exploits the sparsity structure of the beam sub-block to construct a sparse approximate inverse, which is then not only used to explicitly form an approximation of the Schur complement, but also acts as a smoother within the prediction step of the arising SIMPLE-type preconditioner. The correction step utilizes an algebraic multigrid method. Although, for now, the beam sub-block is tackled by a one-level method only, the multi-level nature of the computationally demanding correction step delivers a scalable preconditioner in practice. In numerical test cases, the influence of different algorithmic parameters on the quality of the sparse approximate inverse is studied and the weak scaling behavior of the proposed preconditioner on up to 1000 MPI ranks is demonstrated, before the proposed preconditioner is finally applied for the analysis of steel-reinforced concrete structures in civil engineering.