Deep Learning (DL) has advanced various fields by extracting complex patterns from large datasets. However, the computational demands of DL models pose environmental and resource challenges. Deep shift neural networks (DSNNs) offer a solution by leveraging shift operations to reduce computational complexity at inference. Following the insights from standard DNNs, we are interested in leveraging the full potential of DSNNs by means of AutoML techniques. We study the impact of hyperparameter optimization (HPO) to maximize DSNN performance while minimizing resource consumption. Since this combines multi-objective (MO) optimization with accuracy and energy consumption as potentially complementary objectives, we propose to combine state-of-the-art multi-fidelity (MF) HPO with multi-objective optimization. Experimental results demonstrate the effectiveness of our approach, resulting in models with over 80\% in accuracy and low computational cost. Overall, our method accelerates efficient model development while enabling sustainable AI applications.
Neural Networks (NNs) have been successfully employed to represent the state evolution of complex dynamical systems. Such models, referred to as NN dynamic models (NNDMs), use iterative noisy predictions of NN to estimate a distribution of system trajectories over time. Despite their accuracy, safety analysis of NNDMs is known to be a challenging problem and remains largely unexplored. To address this issue, in this paper, we introduce a method of providing safety guarantees for NNDMs. Our approach is based on stochastic barrier functions, whose relation with safety are analogous to that of Lyapunov functions with stability. We first show a method of synthesizing stochastic barrier functions for NNDMs via a convex optimization problem, which in turn provides a lower bound on the system's safety probability. A key step in our method is the employment of the recent convex approximation results for NNs to find piece-wise linear bounds, which allow the formulation of the barrier function synthesis problem as a sum-of-squares optimization program. If the obtained safety probability is above the desired threshold, the system is certified. Otherwise, we introduce a method of generating controls for the system that robustly maximizes the safety probability in a minimally-invasive manner. We exploit the convexity property of the barrier function to formulate the optimal control synthesis problem as a linear program. Experimental results illustrate the efficacy of the method. Namely, they show that the method can scale to multi-dimensional NNDMs with multiple layers and hundreds of neurons per layer, and that the controller can significantly improve the safety probability.
In nonsmooth, nonconvex stochastic optimization, understanding the uniform convergence of subdifferential mappings is crucial for analyzing stationary points of sample average approximations of risk as they approach the population risk. Yet, characterizing this convergence remains a fundamental challenge. This work introduces a novel perspective by connecting the uniform convergence of subdifferential mappings to that of subgradient mappings as empirical risk converges to the population risk. We prove that, for stochastic weakly-convex objectives, and within any open set, a uniform bound on the convergence of subgradients -- chosen arbitrarily from the corresponding subdifferential sets -- translates to a uniform bound on the convergence of the subdifferential sets itself, measured by the Hausdorff metric. Using this technique, we derive uniform convergence rates for subdifferential sets of stochastic convex-composite objectives. Our results do not rely on key distributional assumptions in the literature, which require the population and finite sample subdifferentials to be continuous in the Hausdorff metric, yet still provide tight convergence rates. These guarantees lead to new insights into the nonsmooth landscapes of such objectives within finite samples.
Stable partitioned techniques for simulating unsteady fluid-structure interaction (FSI) are known to be computationally expensive when high added-mass is involved. Multiple coupling strategies have been developed to accelerate these simulations, but often use predictors in the form of simple finite-difference extrapolations. In this work, we propose a non-intrusive data-driven predictor that couples reduced-order models of both the solid and fluid subproblems, providing an initial guess for the nonlinear problem of the next time step calculation. Each reduced order model is composed of a nonlinear encoder-regressor-decoder architecture and is equipped with an adaptive update strategy that adds robustness for extrapolation. In doing so, the proposed methodology leverages physics-based insights from high-fidelity solvers, thus establishing a physics-aware machine learning predictor. Using three strongly coupled FSI examples, this study demonstrates the improved convergence obtained with the new predictor and the overall computational speedup realized compared to classical approaches.
The systolic accelerator is one of the premier architectural choices for DNN acceleration. However, the conventional systolic architecture suffers from low PE utilization due to the mismatch between the fixed array and diverse DNN workloads. Recent studies have proposed flexible systolic array architectures to adapt to DNN models. However, these designs support only coarse-grained reshaping or significantly increase hardware overhead. In this study, we propose ReDas, a flexible and lightweight systolic array that supports dynamic fine-grained reshaping and multiple dataflows. First, ReDas integrates lightweight and reconfigurable roundabout data paths, which achieve fine-grained reshaping using only short connections between adjacent PEs. Second, we redesign the PE microarchitecture and integrate a set of multi-mode data buffers around the array. The PE structure enables additional data bypassing and flexible data switching. Simultaneously, the multi-mode buffers facilitate fine-grained reallocation of on-chip memory resources, adapting to various dataflow requirements. ReDas can dynamically reconfigure to up to 129 different logical shapes and 3 dataflows for a 128x128 array. Finally, we propose an efficient mapper to generate appropriate configurations for each layer of DNN workloads. Compared to the conventional systolic array, ReDas can achieve about 4.6x speedup and 8.3x energy-delay product (EDP) reduction.
There exist endless examples of dynamical systems with vast available data and unsatisfying mathematical descriptions. Sparse regression applied to symbolic libraries has quickly emerged as a powerful tool for learning governing equations directly from data; these learned equations balance quantitative accuracy with qualitative simplicity and human interpretability. Here, I present a general purpose, model agnostic sparse regression algorithm that extends a recently proposed exhaustive search leveraging iterative Singular Value Decompositions (SVD). This accelerated scheme, Scalable Pruning for Rapid Identification of Null vecTors (SPRINT), uses bisection with analytic bounds to quickly identify optimal rank-1 modifications to null vectors. It is intended to maintain sensitivity to small coefficients and be of reasonable computational cost for large symbolic libraries. A calculation that would take the age of the universe with an exhaustive search but can be achieved in a day with SPRINT.
Reinforcement Learning (RL) is a widely employed technique in decision-making problems, encompassing two fundamental operations -- policy evaluation and policy improvement. Enhancing learning efficiency remains a key challenge in RL, with many efforts focused on using ensemble critics to boost policy evaluation efficiency. However, when using multiple critics, the actor in the policy improvement process can obtain different gradients. Previous studies have combined these gradients without considering their disagreements. Therefore, optimizing the policy improvement process is crucial to enhance learning efficiency. This study focuses on investigating the impact of gradient disagreements caused by ensemble critics on policy improvement. We introduce the concept of uncertainty of gradient directions as a means to measure the disagreement among gradients utilized in the policy improvement process. Through measuring the disagreement among gradients, we find that transitions with lower uncertainty of gradient directions are more reliable in the policy improvement process. Building on this analysis, we propose a method called von Mises-Fisher Experience Resampling (vMFER), which optimizes the policy improvement process by resampling transitions and assigning higher confidence to transitions with lower uncertainty of gradient directions. Our experiments demonstrate that vMFER significantly outperforms the benchmark and is particularly well-suited for ensemble structures in RL.
Many industry verticals are confronted with small-sized tabular data. In this low-data regime, it is currently unclear whether the best performance can be expected from simple baselines, or more complex machine learning approaches that leverage meta-learning and ensembling. On 44 tabular classification datasets with sample sizes $\leq$ 500, we find that L2-regularized logistic regression performs similar to state-of-the-art automated machine learning (AutoML) frameworks (AutoPrognosis, AutoGluon) and off-the-shelf deep neural networks (TabPFN, HyperFast) on the majority of the benchmark datasets. We therefore recommend to consider logistic regression as the first choice for data-scarce applications with tabular data and provide practitioners with best practices for further method selection.
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.