We introduce an $r-$adaptive algorithm to solve Partial Differential Equations using a Deep Neural Network. The proposed method restricts to tensor product meshes and optimizes the boundary node locations in one dimension, from which we build two- or three-dimensional meshes. The method allows the definition of fixed interfaces to design conforming meshes, and enables changes in the topology, i.e., some nodes can jump across fixed interfaces. The method simultaneously optimizes the node locations and the PDE solution values over the resulting mesh. To numerically illustrate the performance of our proposed $r-$adaptive method, we apply it in combination with a collocation method, a Least Squares Method, and a Deep Ritz Method. We focus on the latter to solve one- and two-dimensional problems whose solutions are smooth, singular, and/or exhibit strong gradients.
We propose new differential privacy solutions for when external \emph{invariants} and \emph{integer} constraints are simultaneously enforced on the data product. These requirements arise in real world applications of private data curation, including the public release of the 2020 U.S. Decennial Census. They pose a great challenge to the production of provably private data products with adequate statistical usability. We propose \emph{integer subspace differential privacy} to rigorously articulate the privacy guarantee when data products maintain both the invariants and integer characteristics, and demonstrate the composition and post-processing properties of our proposal. To address the challenge of sampling from a potentially highly restricted discrete space, we devise a pair of unbiased additive mechanisms, the generalized Laplace and the generalized Gaussian mechanisms, by solving the Diophantine equations as defined by the constraints. The proposed mechanisms have good accuracy, with errors exhibiting sub-exponential and sub-Gaussian tail probabilities respectively. To implement our proposal, we design an MCMC algorithm and supply empirical convergence assessment using estimated upper bounds on the total variation distance via $L$-lag coupling. We demonstrate the efficacy of our proposal with applications to a synthetic problem with intersecting invariants, a sensitive contingency table with known margins, and the 2010 Census county-level demonstration data with mandated fixed state population totals.
We consider the problem of learning Stochastic Differential Equations of the form $dX_t = f(X_t)dt+\sigma(X_t)dW_t $ from one sample trajectory. This problem is more challenging than learning deterministic dynamical systems because one sample trajectory only provides indirect information on the unknown functions $f$, $\sigma$, and stochastic process $dW_t$ representing the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a method that combines Computational Graph Completion and data adapted kernels learned via a new variant of cross validation. Our approach can be decomposed as follows: (1) Represent the time-increment map $X_t \rightarrow X_{t+dt}$ as a Computational Graph in which $f$, $\sigma$ and $dW_t$ appear as unknown functions and random variables. (2) Complete the graph (approximate unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels) of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the efficacy, robustness, and scope of our method.
We propose a conservative energy method based on neural networks with subdomains for solving variational problems (CENN), where the admissible function satisfying the essential boundary condition without boundary penalty is constructed by the radial basis function (RBF), particular solution neural network, and general neural network. The loss term is the potential energy, optimized based on the principle of minimum potential energy. The loss term at the interfaces has the lower order derivative compared to the strong form PINN with subdomains. The advantage of the proposed method is higher efficiency, more accurate, and less hyperparameters than the strong form PINN with subdomains. Another advantage of the proposed method is that it can apply to complex geometries based on the special construction of the admissible function. To analyze its performance, the proposed method CENN is used to model representative PDEs, the examples include strong discontinuity, singularity, complex boundary, non-linear, and heterogeneous problems. Furthermore, it outperforms other methods when dealing with heterogeneous problems.
Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method.
For basic machine learning problems, expected error is used to evaluate model performance. Since the distribution of data is usually unknown, we can make simple hypothesis that the data are sampled independently and identically distributed (i.i.d.) and the mean value of loss function is used as the empirical risk by Law of Large Numbers (LLN). This is known as the Monte Carlo method. However, when LLN is not applicable, such as imbalanced data problems, empirical risk will cause overfitting and might decrease robustness and generalization ability. Inspired by the framework of nonlinear expectation theory, we substitute the mean value of loss function with the maximum value of subgroup mean loss. We call it nonlinear Monte Carlo method. In order to use numerical method of optimization, we linearize and smooth the functional of maximum empirical risk and get the descent direction via quadratic programming. With the proposed method, we achieve better performance than SOTA backbone models with less training steps, and more robustness for basic regression and imbalanced classification tasks.
Large convolutional neural networks (CNN) can be difficult to train in the differentially private (DP) regime, since the optimization algorithms require a computationally expensive operation, known as the per-sample gradient clipping. We propose an efficient and scalable implementation of this clipping on convolutional layers, termed as the mixed ghost clipping, that significantly eases the private training in terms of both time and space complexities, without affecting the accuracy. The improvement in efficiency is rigorously studied through the first complexity analysis for the mixed ghost clipping and existing DP training algorithms. Extensive experiments on vision classification tasks, with large ResNet, VGG, and Vision Transformers, demonstrate that DP training with mixed ghost clipping adds $1\sim 10\%$ memory overhead and $<2\times$ slowdown to the standard non-private training. Specifically, when training VGG19 on CIFAR10, the mixed ghost clipping is $3\times$ faster than state-of-the-art Opacus library with $18\times$ larger maximum batch size. To emphasize the significance of efficient DP training on convolutional layers, we achieve 96.7\% accuracy on CIFAR10 and 83.0\% on CIFAR100 at $\epsilon=1$ using BEiT, while the previous best results are 94.8\% and 67.4\%, respectively. We open-source a privacy engine (\url{//github.com/woodyx218/private_vision}) that implements DP training of CNN with a few lines of code.
In this paper, we propose a tensor type of discretization and optimization process for solving high dimensional partial differential equations. First, we design the tensor type of trial function for the high dimensional partial differential equations. Based on the tensor structure of the trial functions, we can do the direct numerical integration of the approximate solution without the help of Monte-Carlo method. Then combined with the Ritz or Galerkin method, solving the high dimensional partial differential equation can be transformed to solve a concerned optimization problem. Some numerical tests are provided to validate the proposed numerical methods.
Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.