This paper studies statistical decisions for dynamic treatment assignment problems. Many policies involve dynamics in their treatment assignments where treatments are sequentially assigned to individuals across multiple stages and the effect of treatment at each stage is usually heterogeneous with respect to the prior treatments, past outcomes, and observed covariates. We consider estimating an optimal dynamic treatment rule that guides the optimal treatment assignment for each individual at each stage based on the individual's history. This paper proposes an empirical welfare maximization approach in a dynamic framework. The approach estimates the optimal dynamic treatment rule from panel data taken from an experimental or quasi-experimental study. The paper proposes two estimation methods: one solves the treatment assignment problem at each stage through backward induction, and the other solves the whole dynamic treatment assignment problem simultaneously across all stages. We derive finite-sample upper bounds on the worst-case average welfare-regrets for the proposed methods and show $n^{-1/2}$-minimax convergence rates. We also modify the simultaneous estimation method to incorporate intertemporal budget/capacity constraints.
In many clinical trials, outcomes of interest include binary-valued endpoints. It is not uncommon that a binary-valued outcome is dichotomized from a continuous outcome at a threshold of clinical interest. To reach the objective, common approaches include (a) fitting the generalized linear mixed model (GLMM) to the dichotomized longitudinal binary outcome and (b) imputation method (MI): imputing the missing values in the continuous outcome, dichotomizing it into a binary outcome, and then fitting the generalized linear model for the "complete" data. We conducted comprehensive simulation studies to compare the performance of GLMM with MI for estimating risk difference and logarithm of odds ratio between two treatment arms at the end of study. In those simulation studies, we considered a range of multivariate distribution options for the continuous outcome (including a multivariate normal distribution, a multivariate t-distribution, a multivariate log-normal distribution, and the empirical distribution from a real clinical trial data) to evaluate the robustness of the estimators to various data-generating models. Simulation results demonstrate that both methods work well under those considered distribution options, but MI is more efficient with smaller mean squared errors compared to GLMM. We further applied both the GLMM and MI to 29 phase 3 diabetes clinical trials, and found that the MI method generally led to smaller variance estimates compared to GLMM.
Classically transmission conditions between subdomains are optimized for a simplified two subdomain decomposition to obtain optimized Schwarz methods for many subdomains. We investigate here if such a simplified optimization suffices for the magnetotelluric approximation of Maxwell's equation which leads to a complex diffusion problem. We start with a direct analysis for 2 and 3 subdomains, and present asymptotically optimized transmission conditions in each case. We then optimize transmission conditions numerically for 4, 5 and 6 subdomains and observe the same asymptotic behavior of optimized transmission conditions. We finally use the technique of limiting spectra to optimize for a very large number of subdomains in a strip decomposition. Our analysis shows that the asymptotically best choice of transmission conditions is the same in all these situations, only the constants differ slightly. It is therefore enough for such diffusive type approximations of Maxwell's equations, which include the special case of the Laplace and screened Laplace equation, to optimize transmission parameters in the simplified two subdomain decomposition setting to obtain good transmission conditions for optimized Schwarz methods for more general decompositions.
The estimation of Average Treatment Effect (ATE) as a causal parameter is carried out in two steps, wherein the first step, the treatment, and outcome are modeled to incorporate the potential confounders, and in the second step, the predictions are inserted into the ATE estimators such as the Augmented Inverse Probability Weighting (AIPW) estimator. Due to the concerns regarding the nonlinear or unknown relationships between confounders and the treatment and outcome, there has been an interest in applying non-parametric methods such as Machine Learning (ML) algorithms instead. \cite{farrell2018deep} proposed to use two separate Neural Networks (NNs) where there's no regularization on the network's parameters except the Stochastic Gradient Descent (SGD) in the NN's optimization. Our simulations indicate that the AIPW estimator suffers extensively if no regularization is utilized. We propose the normalization of AIPW (referred to as nAIPW) which can be helpful in some scenarios. nAIPW, provably, has the same properties as AIPW, that is double-robustness and orthogonality \citep{chernozhukov2018double}. Further, if the first step algorithms converge fast enough, under regulatory conditions \citep{chernozhukov2018double}, nAIPW will be asymptotically normal.
We consider parametric estimation for multi-dimensional diffusion processes with a small dispersion parameter $\varepsilon$ from discrete observations. For parametric estimation of diffusion processes, the main targets are the drift parameter $\alpha$ and the diffusion parameter $\beta$. In this paper, we propose two types of adaptive estimators for $(\alpha,\beta)$ and show their asymptotic properties under $\varepsilon\to0$, $n\to\infty$ and the balance condition that $(\varepsilon n^\rho)^{-1} =O(1)$ for some $\rho\ge 1/2$. In simulation studies, we examine and compare asymptotic behaviors of the two kinds of adaptive estimators. Moreover, we treat the SIR model which describes a simple epidemic spread for a biological application.
Inverse probability of treatment weighting (IPTW) is a popular method for estimating the average treatment effect (ATE). However, empirical studies show that the IPTW estimators can be sensitive to the misspecification of the propensity score model. To address this problem, researchers have proposed to estimate propensity score by directly optimizing the balance of pre-treatment covariates. While these methods appear to empirically perform well, little is known about how the choice of balancing conditions affects their theoretical properties. To fill this gap, we first characterize the asymptotic bias and efficiency of the IPTW estimator based on the Covariate Balancing Propensity Score (CBPS) methodology under local model misspecification. Based on this analysis, we show how to optimally choose the covariate balancing functions and propose an optimal CBPS-based IPTW estimator. This estimator is doubly robust; it is consistent for the ATE if either the propensity score model or the outcome model is correct. In addition, the proposed estimator is locally semiparametric efficient when both models are correctly specified. To further relax the parametric assumptions, we extend our method by using a sieve estimation approach. We show that the resulting estimator is globally efficient under a set of much weaker assumptions and has a smaller asymptotic bias than the existing estimators. Finally, we evaluate the finite sample performance of the proposed estimators via simulation and empirical studies. An open-source software package is available for implementing the proposed methods.
The occurrence of successive extreme observations can have an impact on society. In extreme value theory there are parameters to evaluate the effect of clustering of high values, such as the extremal index. The estimation of the extremal index is a recurrent theme in the literature and there are several methodologies for this purpose. The majority of existing methods depend on two parameters whose choice affects the performance of the estimators. Here we consider a new estimator depending only on one of the parameters, thus contributing to a decrease in the degree of uncertainty. A simulation study presents motivating results. An application to financial data will also be presented.
We consider a randomized controlled trial between two groups. The objective is to identify a population with characteristics such that the test therapy is more effective than the control therapy. Such a population is called a subgroup. This identification can be made by estimating the treatment effect and identifying interactions between treatments and covariates. To date, many methods have been proposed to identify subgroups for a single outcome. There are also multiple outcomes, but they are difficult to interpret and cannot be applied to outcomes other than continuous values. In this paper, we propose a multivariate regression method that introduces latent variables to estimate the treatment effect on multiple outcomes simultaneously. The proposed method introduces latent variables and adds Lasso sparsity constraints to the estimated loadings to facilitate the interpretation of the relationship between outcomes and covariates. The framework of the generalized linear model makes it applicable to various types of outcomes. Interpretation of subgroups is made by visualizing treatment effects and latent variables. This allows us to identify subgroups with characteristics that make the test therapy more effective for multiple outcomes. Simulation and real data examples demonstrate the effectiveness of the proposed method.
Complete randomization allows for consistent estimation of the average treatment effect based on the difference in means of the outcomes without strong modeling assumptions on the outcome-generating process. Appropriate use of the pretreatment covariates can further improve the estimation efficiency. However, missingness in covariates is common in experiments and raises an important question: should we adjust for covariates subject to missingness, and if so, how? The unadjusted difference in means is always unbiased. The complete-covariate analysis adjusts for all completely observed covariates and improves the efficiency of the difference in means if at least one completely observed covariate is predictive of the outcome. Then what is the additional gain of adjusting for covariates subject to missingness? A key insight is that the missingness indicators act as fully observed pretreatment covariates as long as missingness is not affected by the treatment, and can thus be used in covariate adjustment to bring additional estimation efficiency. This motivates adding the missingness indicators to the regression adjustment, yielding the missingness-indicator method as a well-known but not so popular strategy in the literature of missing data. We recommend it due to its many advantages. We also propose modifications to the missingness-indicator method based on asymptotic and finite-sample considerations. To reconcile the conflicting recommendations in the missing data literature, we analyze and compare various strategies for analyzing randomized experiments with missing covariates under the design-based framework. This framework treats randomization as the basis for inference and does not impose any modeling assumptions on the outcome-generating process and missing-data mechanism.
In a bipartite experiment, units that are assigned treatments differ from the units for which we measure outcomes. The two groups of units are connected by a bipartite graph, governing how the treated units can affect the outcome units. Often motivated by experiments in marketplaces, the bipartite experimental framework has been used for example to investigate the causal effects of supply-side changes on demand-side behavior. In this paper, we consider the problem of estimating the average total treatment effect in the bipartite experimental framework under a linear exposure-response model. We introduce the Exposure Reweighted Linear (ERL) Estimator, an unbiased linear estimator of the average treatment effect in this setting. We show that the estimator is consistent and asymptotically normal, provided that the bipartite graph is sufficiently sparse. We derive a variance estimator which facilitates confidence intervals based on a normal approximation. In addition, we introduce Exposure-Design, a cluster-based design which aims to increase the precision of the ERL estimator by realizing desirable exposure distributions. Finally, we demonstrate the effectiveness of the described estimator and design with an application using a publicly available Amazon user-item review graph.
This paper studies the estimation of long-term treatment effects though the combination of short-term experimental and long-term observational datasets. In particular, we consider settings in which only short-term outcomes are observed in an experimental sample with exogenously assigned treatment, both short-term and long-term outcomes are observed in an observational sample where treatment assignment may be confounded, and the researcher is willing to assume that the causal relationships between treatment assignment and the short-term and long-term outcomes share the same unobserved confounding variables in the observational sample. We derive the efficient influence function for the average causal effect of treatment on long-term outcomes in each of the models that we consider and characterize the corresponding asymptotic semiparametric efficiency bounds.