亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Taylor expansion, which stems from Linear Logic and its differential extensions, is an approximation framework for the $\lambda$-calculus (and many of its variants). The reduction of the approximants of a $\lambda$-term induces a reduction on the $\lambda$-term itself, which enjoys a simulation property: whenever a term reduces to another, the approximants reduce accordingly. In recent work, we extended this result to an infinitary $\lambda$-calculus (namely, $\Lambda_{\infty}^{001}$). This short paper solves the question whether the converse property also holds: if the approximants of some term reduce to the approximants of another term, is there a $\beta$-reduction between these terms? This happens to be true for the $\lambda$-calculus, as we show, but our proof fails in the infinitary case. We exhibit a counter-example, refuting the conservativity for $\Lambda_{\infty}^{001}$.

相關內容

A sequence of random variables is called exchangeable if its joint distribution is invariant under permutations. The original formulation of de Finetti's theorem says that any exchangeable sequence of $\{0,1\}$-valued random variables can be thought of as a mixture of independent and identically distributed sequences in a certain precise mathematical sense. Interpreting this statement from a convex analytic perspective, Hewitt and Savage obtained the same conclusion for more general state spaces under some topological conditions. The main contribution of this paper is in providing a new framework that explains the theorem purely as a consequence of the underlying distribution of the random variables, with no topological conditions (beyond Hausdorffness) on the state space being necessary if the distribution is Radon. We also show that it is consistent with the axioms of ZFC that de Finetti's theorem holds for all sequences of exchangeable random variables taking values in any complete metric space. The framework we use is based on nonstandard analysis. We have provided a self-contained introduction to nonstandard analysis as an appendix, thus rendering measure theoretic probability and point-set topology as the only prerequisites for this paper. Our introduction aims to develop some new ideologies that might be of interest to mathematicians, philosophers, and mathematics educators alike. Our technical tools come from nonstandard topological measure theory, in which a highlight is a new generalization of Prokhorov's theorem. Modulo such technical tools, our proof relies on properties of the empirical measures induced by hyperfinitely many identically distributed random variables -- a feature that allows us to establish de Finetti's theorem in the generality that we seek while still retaining the combinatorial intuition of proofs of simpler versions of de Finetti's theorem.

Mutual information is a general statistical dependency measure which has found applications in representation learning, causality, domain generalization and computational biology. However, mutual information estimators are typically evaluated on simple families of probability distributions, namely multivariate normal distribution and selected distributions with one-dimensional random variables. In this paper, we show how to construct a diverse family of distributions with known ground-truth mutual information and propose a language-independent benchmarking platform for mutual information estimators. We discuss the general applicability and limitations of classical and neural estimators in settings involving high dimensions, sparse interactions, long-tailed distributions, and high mutual information. Finally, we provide guidelines for practitioners on how to select appropriate estimator adapted to the difficulty of problem considered and issues one needs to consider when applying an estimator to a new data set.

This paper presents a method for reproducing a simple central pattern generator (CPG) using a modified Echo State Network (ESN). Conventionally, the dynamical reservoir needs to be damped to stabilize and preserve memory. However, we find that a reservoir that develops oscillatory activity without any external excitation can mimic the behaviour of a simple CPG in biological systems. We define the specific neuron ensemble required for generating oscillations in the reservoir and demonstrate how adjustments to the leaking rate, spectral radius, topology, and population size can increase the probability of reproducing these oscillations. The results of the experiments, conducted on the time series simulation tasks, demonstrate that the ESN is able to generate the desired waveform without any input. This approach offers a promising solution for the development of bio-inspired controllers for robotic systems.

In extreme value theory and other related risk analysis fields, probability weighted moments (PWM) have been frequently used to estimate the parameters of classical extreme value distributions. This method-of-moment technique can be applied when second moments are finite, a reasonable assumption in many environmental domains like climatological and hydrological studies. Three advantages of PWM estimators can be put forward: their simple interpretations, their rapid numerical implementation and their close connection to the well-studied class of U-statistics. Concerning the later, this connection leads to precise asymptotic properties, but non asymptotic bounds have been lacking when off-the-shelf techniques (Chernoff method) cannot be applied, as exponential moment assumptions become unrealistic in many extreme value settings. In addition, large values analysis is not immune to the undesirable effect of outliers, for example, defective readings in satellite measurements or possible anomalies in climate model runs. Recently, the treatment of outliers has sparked some interest in extreme value theory, but results about finite sample bounds in a robust extreme value theory context are yet to be found, in particular for PWMs or tail index estimators. In this work, we propose a new class of robust PWM estimators, inspired by the median-of-means framework of Devroye et al. (2016). This class of robust estimators is shown to satisfy a sub-Gaussian inequality when the assumption of finite second moments holds. Such non asymptotic bounds are also derived under the general contamination model. Our main proposition confirms theoretically a trade-off between efficiency and robustness. Our simulation study indicates that, while classical estimators of PWMs can be highly sensitive to outliers.

In epidemiological studies, the capture-recapture (CRC) method is a powerful tool that can be used to estimate the number of diseased cases or potentially disease prevalence based on data from overlapping surveillance systems. Estimators derived from log-linear models are widely applied by epidemiologists when analyzing CRC data. The popularity of the log-linear model framework is largely associated with its accessibility and the fact that interaction terms can allow for certain types of dependency among data streams. In this work, we shed new light on significant pitfalls associated with the log-linear model framework in the context of CRC using real data examples and simulation studies. First, we demonstrate that the log-linear model paradigm is highly exclusionary. That is, it can exclude, by design, many possible estimates that are potentially consistent with the observed data. Second, we clarify the ways in which regularly used model selection metrics (e.g., information criteria) are fundamentally deceiving in the effort to select a best model in this setting. By focusing attention on these important cautionary points and on the fundamental untestable dependency assumption made when fitting a log-linear model to CRC data, we hope to improve the quality of and transparency associated with subsequent surveillance-based CRC estimates of case counts.

Quantifier elimination (qelim) is used in many automated reasoning tasks including program synthesis, exist-forall solving, quantified SMT, Model Checking, and solving Constrained Horn Clauses (CHCs). Exact qelim is computationally expensive. Hence, it is often approximated. For example, Z3 uses "light" pre-processing to reduce the number of quantified variables. CHC-solver Spacer uses model-based projection (MBP) to under-approximate qelim relative to a given model, and over-approximations of qelim can be used as abstractions. In this paper, we present the QEL framework for fast approximations of qelim. QEL provides a uniform interface for both quantifier reduction and model-based projection. QEL builds on the egraph data structure -- the core of the EUF decision procedure in SMT -- by casting quantifier reduction as a problem of choosing ground (i.e., variable-free) representatives for equivalence classes. We have used QEL to implement MBP for the theories of Arrays and Algebraic Data Types (ADTs). We integrated QEL and our new MBP in Z3 and evaluated it within several tasks that rely on quantifier approximations, outperforming state-of-the-art.

Empirical evidence demonstrates that citations received by scholarly publications follow a pattern of preferential attachment, resulting in a power-law distribution. Such asymmetry has sparked significant debate regarding the use of citations for research evaluation. However, a consensus has yet to be established concerning the historical trends in citation concentration. Are citations becoming more concentrated in a small number of articles? Or have recent geopolitical and technical changes in science led to more decentralized distributions? This ongoing debate stems from a lack of technical clarity in measuring inequality. Given the variations in citation practices across disciplines and over time, it is crucial to account for multiple factors that can influence the findings. This article explores how reference-based and citation-based approaches, uncited articles, citation inflation, the expansion of bibliometric databases, disciplinary differences, and self-citations affect the evolution of citation concentration. Our results indicate a decreasing trend in citation concentration, primarily driven by a decline in uncited articles, which, in turn, can be attributed to the growing significance of Asia and Europe. On the whole, our findings clarify current debates on citation concentration and show that, contrary to a widely-held belief, citations are increasingly scattered.

In this brief note, we consider estimation of the bitwise combination $x_1 \lor \dots \lor x_n = \max_i x_i$ observing a set of noisy bits $\tilde x_i \in \{0, 1\}$ that represent the true, unobserved bits $x_i \in \{0, 1\}$ under randomized response. We demonstrate that various existing estimators for the extreme bit, including those based on computationally costly estimates of the sum of bits, can be reduced to a simple closed form computed in linear time (in $n$) and constant space, including in an online fashion as new $\tilde x_i$ are observed. In particular, we derive such an estimator and provide its variance using only elementary techniques.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司