We consider a high-dimensional sparse normal means model where the goal is to estimate the mean vector assuming the proportion of non-zero means is unknown. We model the mean vector by a one-group global-local shrinkage prior belonging to a broad class of such priors that includes the horseshoe prior. We address some questions related to asymptotic properties of the resulting posterior distribution of the mean vector for the said class priors. We consider two ways to model the global parameter in this paper. Firstly by considering this as an unknown fixed parameter and then by an empirical Bayes estimate of it. In the second approach, we do a hierarchical Bayes treatment by assigning a suitable non-degenerate prior distribution to it. We first show that for the class of priors under study, the posterior distribution of the mean vector contracts around the true parameter at a near minimax rate when the empirical Bayes approach is used. Next, we prove that in the hierarchical Bayes approach, the corresponding Bayes estimate attains the minimax risk asymptotically under the squared error loss function. We also show that the posterior contracts around the true parameter at a near minimax rate. These results generalize those of van der Pas et al. (2014) \cite{van2014horseshoe}, (2017) \cite{van2017adaptive}, proved for the horseshoe prior. We have also studied in this work the asymptotic Bayes optimality of global-local shrinkage priors where the number of non-null hypotheses is unknown. Here our target is to propose some conditions on the prior density of the global parameter such that the Bayes risk induced by the decision rule attains Optimal Bayes risk, up to some multiplicative constant. Using our proposed condition, under the asymptotic framework of Bogdan et al. (2011) \cite{bogdan2011asymptotic}, we are able to provide an affirmative answer to satisfy our hunch.
In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the high order convergence persists for an order four variant of a splitting method, and also for a nonlinear source term.
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
In this paper, we propose a Riemannian Acceleration with Preconditioning (RAP) for symmetric eigenvalue problems, which is one of the most important geodesically convex optimization problem on Riemannian manifold, and obtain the acceleration. Firstly, the preconditioning for symmetric eigenvalue problems from the Riemannian manifold viewpoint is discussed. In order to obtain the local geodesic convexity, we develop the leading angle to measure the quality of the preconditioner for symmetric eigenvalue problems. A new Riemannian acceleration, called Locally Optimal Riemannian Accelerated Gradient (LORAG) method, is proposed to overcome the local geodesic convexity for symmetric eigenvalue problems. With similar techniques for RAGD and analysis of local convex optimization in Euclidean space, we analyze the convergence of LORAG. Incorporating the local geodesic convexity of symmetric eigenvalue problems under preconditioning with the LORAG, we propose the Riemannian Acceleration with Preconditioning (RAP) and prove its acceleration. Additionally, when the Schwarz preconditioner, especially the overlapping or non-overlapping domain decomposition method, is applied for elliptic eigenvalue problems, we also obtain the rate of convergence as $1-C\kappa^{-1/2}$, where $C$ is a constant independent of the mesh sizes and the eigenvalue gap, $\kappa=\kappa_{\nu}\lambda_{2}/(\lambda_{2}-\lambda_{1})$, $\kappa_{\nu}$ is the parameter from the stable decomposition, $\lambda_{1}$ and $\lambda_{2}$ are the smallest two eigenvalues of the elliptic operator. Numerical results show the power of Riemannian acceleration and preconditioning.
We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.
We study a subspace constrained version of the randomized Kaczmarz algorithm for solving large linear systems in which the iterates are confined to the space of solutions of a selected subsystem. We show that the subspace constraint leads to an accelerated convergence rate, especially when the system has structure such as having coherent rows or being approximately low-rank. On Gaussian-like random data, it results in a form of dimension reduction that effectively improves the aspect ratio of the system. Furthermore, this method serves as a building block for a second, quantile-based algorithm for the problem of solving linear systems with arbitrary sparse corruptions, which is able to efficiently exploit partial external knowledge about uncorrupted equations and achieve convergence in difficult settings such as in almost-square systems. Numerical experiments on synthetic and real-world data support our theoretical results and demonstrate the validity of the proposed methods for even more general data models than guaranteed by the theory.
Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.
Simulating physical problems involving multi-time scale coupling is challenging due to the need of solving these multi-time scale processes simultaneously. In response to this challenge, this paper proposed an explicit multi-time step algorithm coupled with a solid dynamic relaxation scheme. The explicit scheme simplifies the equation system in contrast to the implicit scheme, while the multi-time step algorithm allows the equations of different physical processes to be solved under different time step sizes. Furthermore, an implicit viscous damping relaxation technique is applied to significantly reduce computational iterations required to achieve equilibrium in the comparatively fast solid response process. To validate the accuracy and efficiency of the proposed algorithm, two distinct scenarios, i.e., a nonlinear hardening bar stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated. The results show good agreement with experimental data and results from other numerical methods, and the simulation time is reduced firstly by independently addressing different processes with the multi-time step algorithm and secondly decreasing solid dynamic relaxation time through the incorporation of damping techniques.
In this research work, we propose a high-order time adapted scheme for pricing a coupled system of fixed-free boundary constant elasticity of variance (CEV) model on both equidistant and locally refined space-grid. The performance of our method is substantially enhanced to improve irregularities in the model which are both inherent and induced. Furthermore, the system of coupled PDEs is strongly nonlinear and involves several time-dependent coefficients that include the first-order derivative of the early exercise boundary. These coefficients are approximated from a fourth-order analytical approximation which is derived using a regularized square-root function. The semi-discrete equation for the option value and delta sensitivity is obtained from a non-uniform fourth-order compact finite difference scheme. Fifth-order 5(4) Dormand-Prince time integration method is used to solve the coupled system of discrete equations. Enhancing the performance of our proposed method with local mesh refinement and adaptive strategies enables us to obtain highly accurate solution with very coarse space grids, hence reducing computational runtime substantially. We further verify the performance of our methodology as compared with some of the well-known and better-performing existing methods.
In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.