We give a fast(er), communication-free, parallel construction of optimal communication schedules that allow broadcasting of $n$ distinct blocks of data from a root processor to all other processors in $1$-ported, $p$-processor networks with fully bidirectional communication. For any $p$ and $n$, broadcasting in this model requires $n-1+\lceil\log_2 p\rceil$ communication rounds. In contrast to other constructions, all processors follow the same, circulant graph communication pattern, which makes it possible to use the schedules for the allgather (all-to-all-broadcast) operation as well. The new construction takes $O(\log^3 p)$ time steps per processor, each of which can compute its part of the schedule independently of the other processors in $O(\log p)$ space. The result is a significant improvement over the sequential $O(p \log^2 p)$ time and $O(p\log p)$ space construction of Tr\"aff and Ripke (2009) with considerable practical import. The round-optimal schedule construction is then used to implement communication optimal algorithms for the broadcast and (irregular) allgather collective operations as found in MPI (the \emph{Message-Passing Interface}), and significantly and practically improves over the implementations in standard MPI libraries (\texttt{mpich}, OpenMPI, Intel MPI) for certain problem ranges. The application to the irregular allgather operation is entirely new.
Occlusion is a common issue in 3D reconstruction from RGB-D videos, often blocking the complete reconstruction of objects and presenting an ongoing problem. In this paper, we propose a novel framework, empowered by a 2D diffusion-based in-painting model, to reconstruct complete surfaces for the hidden parts of objects. Specifically, we utilize a pre-trained diffusion model to fill in the hidden areas of 2D images. Then we use these in-painted images to optimize a neural implicit surface representation for each instance for 3D reconstruction. Since creating the in-painting masks needed for this process is tricky, we adopt a human-in-the-loop strategy that involves very little human engagement to generate high-quality masks. Moreover, some parts of objects can be totally hidden because the videos are usually shot from limited perspectives. To ensure recovering these invisible areas, we develop a cascaded network architecture for predicting signed distance field, making use of different frequency bands of positional encoding and maintaining overall smoothness. Besides the commonly used rendering loss, Eikonal loss, and silhouette loss, we adopt a CLIP-based semantic consistency loss to guide the surface from unseen camera angles. Experiments on ScanNet scenes show that our proposed framework achieves state-of-the-art accuracy and completeness in object-level reconstruction from scene-level RGB-D videos.
An important element of the $S$-matrix bootstrap program is the relationship between the modulus of an $S$-matrix element and its phase. Unitarity relates them by an integral equation. Even in the simplest case of elastic scattering, this integral equation cannot be solved analytically and numerical approaches are required. We apply modern machine learning techniques to studying the unitarity constraint. We find that for a given modulus, when a phase exists it can generally be reconstructed to good accuracy with machine learning. Moreover, the loss of the reconstruction algorithm provides a good proxy for whether a given modulus can be consistent with unitarity at all. In addition, we study the question of whether multiple phases can be consistent with a single modulus, finding novel phase-ambiguous solutions. In particular, we find a new phase-ambiguous solution which pushes the known limit on such solutions significantly beyond the previous bound.
We consider a network of smart sensors for an edge computing application that sample a time-varying signal and send updates to a base station for remote global monitoring. Sensors are equipped with sensing and compute, and can either send raw data or process them on-board before transmission. Limited hardware resources at the edge generate a fundamental latency-accuracy trade-off: raw measurements are inaccurate but timely, whereas accurate processed updates are available after processing delay. Hence, one needs to decide when sensors should transmit raw measurements or rely on local processing to maximize network monitoring performance. To tackle this sensing design problem, we model an estimation-theoretic optimization framework that embeds both computation and communication latency, and propose a Reinforcement Learning-based approach that dynamically allocates computational resources at each sensor. Effectiveness of our proposed approach is validated through numerical experiments motivated by smart sensing for the Internet of Drones and self-driving vehicles. In particular, we show that, under constrained computation at the base station, monitoring performance can be further improved by an online sensor selection.
Deep generative models have recently emerged as a promising de novo drug design method. In this respect, deep generative conditional variational autoencoder (CVAE) models are a powerful approach for generating novel molecules with desired drug-like properties. However, molecular graph-based models with disentanglement and multivariate explicit latent conditioning have not been fully elucidated. To address this, we proposed a molecular-graph $\beta$-CVAE model for de novo drug design. Here, we empirically tuned the value of disentanglement and assessed its ability to generate molecules with optimised univariate- or-multivariate properties. In particular, we optimised the octanol-water partition coefficient (ClogP), molar refractivity (CMR), quantitative estimate of drug-likeness (QED), and synthetic accessibility score (SAS). Results suggest that a lower $\beta$ value increases the uniqueness of generated molecules (exploration). Univariate optimisation results showed our model generated molecular property averages of ClogP = 41.07% $\pm$ 0.01% and CMR 66.76% $\pm$ 0.01% by the Ghose filter. Multivariate property optimisation results showed that our model generated an average of 30.07% $\pm$ 0.01% molecules for both desired properties. Furthermore, our model improved the QED and SAS (exploitation) of molecules generated. Together, these results suggest that the $\beta$-CVAE could balance exploration and exploitation through disentanglement and is a promising model for de novo drug design, thus providing a basis for future studies.
Many open-domain questions are under-specified and thus have multiple possible answers, each of which is correct under a different interpretation of the question. Answering such ambiguous questions is challenging, as it requires retrieving and then reasoning about diverse information from multiple passages. We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia. On the challenging ASQA benchmark, which requires generating long-form answers that summarize the multiple answers to an ambiguous question, our method improves performance by 15% (relative improvement) on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs. Retrieving from the database of generated questions also gives large improvements in diverse passage retrieval (by matching user questions q to passages p indirectly, via questions q' generated from p).
In this paper, we establish anti-concentration inequalities for additive noise mechanisms which achieve $f$-differential privacy ($f$-DP), a notion of privacy phrased in terms of a tradeoff function (a.k.a. ROC curve) $f$ which limits the ability of an adversary to determine which individuals were in the database. We show that canonical noise distributions (CNDs), proposed by Awan and Vadhan (2023), match the anti-concentration bounds at half-integer values, indicating that their tail behavior is near-optimal. We also show that all CNDs are sub-exponential, regardless of the $f$-DP guarantee. In the case of log-concave CNDs, we show that they are the stochastically smallest noise compared to any other noise distributions with the same privacy guarantee. In terms of integer-valued noise, we propose a new notion of discrete CND and prove that a discrete CND always exists, can be constructed by rounding a continuous CND, and that the discrete CND is unique when designed for a statistic with sensitivity 1. We further show that the discrete CND at sensitivity 1 is stochastically smallest compared to other integer-valued noises. Our theoretical results shed light on the different types of privacy guarantees possible in the $f$-DP framework and can be incorporated in more complex mechanisms to optimize performance.
The resolution of near-field beamforming is an important metric to measure how effectively users with different locations can be located. This letter identifies the condition under which the resolution of near-field beamforming is not perfect. This imperfect resolution means that one user's near-field beam can be still useful to other users, which motivates the application of non-orthogonal multiple access (NOMA). Both the analytical and simulation results are developed to demonstrate that those near-field beams preconfigured for legacy users can indeed be used to effectively serve additional NOMA users, which improves the overall connectivity and system throughput.
Algebraic Multigrid (AMG) is one of the most used iterative algorithms for solving large sparse linear equations $Ax=b$. In AMG, the coarse grid is a key component that affects the efficiency of the algorithm, the construction of which relies on the strong threshold parameter $\theta$. This parameter is generally chosen empirically, with a default value in many current AMG solvers of 0.25 for 2D problems and 0.5 for 3D problems. However, for many practical problems, the quality of the coarse grid and the efficiency of the AMG algorithm are sensitive to $\theta$; the default value is rarely optimal, and sometimes is far from it. Therefore, how to choose a better $\theta$ is an important question. In this paper, we propose a deep learning based auto-tuning method, AutoAMG($\theta$) for multiscale sparse linear equations, which are widely used in practical problems. The method uses Graph Neural Networks (GNNs) to extract matrix features, and a Multilayer Perceptron (MLP) to build the mapping between matrix features and the optimal $\theta$, which can adaptively output $\theta$ values for different matrices. Numerical experiments show that AutoAMG($\theta$) can achieve significant speedup compared to the default $\theta$ value.
Graph convolutional networks (GCNs) allow us to learn topologically-aware node embeddings, which can be useful for classification or link prediction. However, they are unable to capture long-range dependencies between nodes without adding additional layers -- which in turn leads to over-smoothing and increased time and space complexity. Further, the complex dependencies between nodes make mini-batching challenging, limiting their applicability to large graphs. We propose a Scalable Multi-resolution Graph Representation Learning (SMGRL) framework that enables us to learn multi-resolution node embeddings efficiently. Our framework is model-agnostic and can be applied to any existing GCN model. We dramatically reduce training costs by training only on a reduced-dimension coarsening of the original graph, then exploit self-similarity to apply the resulting algorithm at multiple resolutions. The resulting multi-resolution embeddings can be aggregated to yield high-quality node embeddings that capture both long- and short-range dependencies. Our experiments show that this leads to improved classification accuracy, without incurring high computational costs.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.