Given a system of triangles in the plane $\mathbb{R}^2$ along with given data of function and gradient values at the vertices, we describe the general pattern of local linear methods invoving only four smooth standard shape functions which results in a spline function fitting the given value and gradient data value with ${\cal C}^1$-coupling along the edges of the triangles. We characterize their invariance properties with relavance for the construction of interpolation surfaces over triangularizations of scanned 3D data. %The described procedures are local linear and affine invariant. The numerically simplest procedures among them leaving invarant all polynomials of 2-variables with degree 0 resp 1 involve only polynomials of 5-th resp. 6-th degree, but the characteizations give rise to a huge variety of procedures with non-polynomial shape functions.
We consider functions $f: \mathbb{Z} \to \mathbb{R}$ and kernels $u: \{-n, \cdots, n\} \to \mathbb{R}$ normalized by $\sum_{\ell = -n}^{n} u(\ell) = 1$, making the convolution $u \ast f$ a "smoother" local average of $f$. We identify which choice of $u$ most effectively smooths the second derivative in the following sense. For each $u$, basic Fourier analysis implies there is a constant $C(u)$ so $\|\Delta(u \ast f)\|_{\ell^2(\mathbb{Z})} \leq C(u)\|f\|_{\ell^2(\mathbb{Z})}$ for all $f: \mathbb{Z} \to \mathbb{R}$. By compactness, there is some $u$ that minimizes $C(u)$ and in this paper, we find explicit expressions for both this minimal $C(u)$ and the minimizing kernel $u$ for every $n$. The minimizing kernel is remarkably close to the Epanechnikov kernel in Statistics. This solves a problem of Kravitz-Steinerberger and an extremal problem for polynomials is solved as a byproduct.
The categorical Gini correlation, $\rho_g$, was proposed by Dang et al. to measure the dependence between a categorical variable, $Y$ , and a numerical variable, $X$. It has been shown that $\rho_g$ has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for $\rho_g$. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.
We propose a volumetric formulation for computing the Optimal Transport problem defined on surfaces in $\mathbb{R}^3$, found in disciplines like optics, computer graphics, and computational methodologies. Instead of directly tackling the original problem on the surface, we define a new Optimal Transport problem on a thin tubular region, $T_{\epsilon}$, adjacent to the surface. This extension offers enhanced flexibility and simplicity for numerical discretization on Cartesian grids. The Optimal Transport mapping and potential function computed on $T_{\epsilon}$ are consistent with the original problem on surfaces. We demonstrate that, with the proposed volumetric approach, it is possible to use simple and straightforward numerical methods to solve Optimal Transport for $\Gamma = \mathbb{S}^2$.
A generalized unbalanced optimal transport distance ${\rm WB}_{\Lambda}$ on matrix-valued measures $\mathcal{M}(\Omega,\mathbb{S}_+^n)$ was defined in [arXiv:2011.05845] \`{a} la Benamou-Brenier, which extends the Kantorovich-Bures and the Wasserstein-Fisher-Rao distances. In this work, we investigate the convergence properties of the discrete transport problems associated with ${\rm WB}_{\Lambda}$. We first present a convergence framework for abstract discretization. Then, we propose a specific discretization scheme that aligns with this framework, under the assumption that the initial and final distributions are absolutely continuous with respect to the Lebesgue measure. Moreover, thanks to the static formulation, we show that such an assumption can be removed for the Wasserstein-Fisher-Rao distance.
We consider structured approximation of measures in Wasserstein space $W_p(\mathbb{R}^d)$ for $p\in[1,\infty)$ by discrete and piecewise constant measures based on a scaled Voronoi partition of $\mathbb{R}^d$. We show that if a full rank lattice $\Lambda$ is scaled by a factor of $h\in(0,1]$, then approximation of a measure based on the Voronoi partition of $h\Lambda$ is $O(h)$ regardless of $d$ or $p$. We then use a covering argument to show that $N$-term approximations of compactly supported measures is $O(N^{-\frac1d})$ which matches known rates for optimal quantizers and empirical measure approximation in most instances. Finally, we extend these results to noncompactly supported measures with sufficient decay.
We introduce the extremal range, a local statistic for studying the spatial extent of extreme events in random fields on $\mathbb{R}^2$. Conditioned on exceedance of a high threshold at a location $s$, the extremal range at $s$ is the random variable defined as the smallest distance from $s$ to a location where there is a non-exceedance. We leverage tools from excursion-set theory to study distributional properties of the extremal range, propose parametric models and predict the median extremal range at extreme threshold levels. The extremal range captures the rate at which the spatial extent of conditional extreme events scales for increasingly high thresholds, and we relate its distributional properties with the bivariate tail dependence coefficient and the extremal index of time series in classical Extreme-Value Theory. Consistent estimation of the distribution function of the extremal range for stationary random fields is proven. For non-stationary random fields, we implement generalized additive median regression to predict extremal-range maps at very high threshold levels. An application to two large daily temperature datasets, namely reanalyses and climate-model simulations for France, highlights decreasing extremal dependence for increasing threshold levels and reveals strong differences in joint tail decay rates between reanalyses and simulations.
The stability of an approximating sequence $(A_n)$ for an operator $A$ usually requires, besides invertibility of $A$, the invertibility of further operators, say $B, C, \dots$, that are well-associated to the sequence $(A_n)$. We study this set, $\{A,B,C,\dots\}$, of so-called stability indicators of $(A_n)$ and connect it to the asymptotics of $\|A_n\|$, $\|A_n^{-1}\|$ and $\kappa(A_n)=\|A_n\|\|A_n^{-1}\|$ as well as to spectral pollution by showing that $\limsup {\rm Spec}_\varepsilon A_n= {\rm Spec}_\varepsilon A\cup{\rm Spec}_\varepsilon B\cup{\rm Spec}_\varepsilon C\cup\dots$. We further specify, for each of $\|A_n\|$, $\|A_n^{-1}\|$, $\kappa(A_n)$ and ${\rm Spec}_\varepsilon A_n$, under which conditions even convergence applies.
For a positive integer $k$, a proper $k$-coloring of a graph $G$ is a mapping $f: V(G) \rightarrow \{1,2, \ldots, k\}$ such that $f(u) \neq f(v)$ for each edge $uv$ of $G$. The smallest integer $k$ for which there is a proper $k$-coloring of $G$ is called the chromatic number of $G$, denoted by $\chi(G)$. A locally identifying coloring (for short, lid-coloring) of a graph $G$ is a proper $k$-coloring of $G$ such that every pair of adjacent vertices with distinct closed neighborhoods has distinct set of colors in their closed neighborhoods. The smallest integer $k$ such that $G$ has a lid-coloring with $k$ colors is called locally identifying chromatic number (for short, lid-chromatic number) of $G$, denoted by $\chi_{lid}(G)$. This paper studies the lid-coloring of the Cartesian product and tensor product of two graphs. We prove that if $G$ and $H$ are two connected graphs having at least two vertices then (a) $\chi_{lid}(G \square H) \leq \chi(G) \chi(H)-1$ and (b) $\chi_{lid}(G \times H) \leq \chi(G) \chi(H)$. Here $G \square H$ and $G \times H$ denote the Cartesian and tensor products of $G$ and $H$ respectively. We determine the lid-chromatic number of $C_m \square P_n$, $C_m \square C_n$, $P_m \times P_n$, $C_m \times P_n$ and $C_m \times C_n$, where $C_m$ and $P_n$ denote a cycle and a path on $m$ and $n$ vertices respectively.
Random objects are complex non-Euclidean data taking value in general metric space, possibly devoid of any underlying vector space structure. Such data are getting increasingly abundant with the rapid advancement in technology. Examples include probability distributions, positive semi-definite matrices, and data on Riemannian manifolds. However, except for regression for object-valued response with Euclidean predictors and distribution-on-distribution regression, there has been limited development of a general framework for object-valued response with object-valued predictors in the literature. To fill this gap, we introduce the notion of a weak conditional Fr\'echet mean based on Carleman operators and then propose a global nonlinear Fr\'echet regression model through the reproducing kernel Hilbert space (RKHS) embedding. Furthermore, we establish the relationships between the conditional Fr\'echet mean and the weak conditional Fr\'echet mean for both Euclidean and object-valued data. We also show that the state-of-the-art global Fr\'echet regression developed by Petersen and Mueller, 2019 emerges as a special case of our method by choosing a linear kernel. We require that the metric space for the predictor admits a reproducing kernel, while the intrinsic geometry of the metric space for the response is utilized to study the asymptotic properties of the proposed estimates. Numerical studies, including extensive simulations and a real application, are conducted to investigate the performance of our estimator in a finite sample.
We improve the previously best known upper bounds on the sizes of $\theta$-spherical codes for every $\theta<\theta^*\approx 62.997^{\circ}$ at least by a factor of $0.4325$, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions $n\geq 2000$ we have an improvement at least by a factor of $0.4325+\frac{51}{n}$. Our method also breaks many non-numerical sphere packing density bounds in smaller dimensions. This is the first such improvement for each dimension since the work of Kabatyanskii and Levenshtein~\cite{KL} and its later improvement by Levenshtein~\cite{Leven79}. Novelties of this paper include the analysis of triple correlations, usage of the concentration of mass in high dimensions, and the study of the spacings between the roots of Jacobi polynomials.