Camera localization, i.e., camera pose regression, represents an important task in computer vision since it has many practical applications such as in the context of intelligent vehicles and their localization. Having reliable estimates of the regression uncertainties is also important, as it would allow us to catch dangerous localization failures. In the literature, uncertainty estimation in Deep Neural Networks (DNNs) is often performed through sampling methods, such as Monte Carlo Dropout (MCD) and Deep Ensemble (DE), at the expense of undesirable execution time or an increase in hardware resources. In this work, we considered an uncertainty estimation approach named Deep Evidential Regression (DER) that avoids any sampling technique, providing direct uncertainty estimates. Our goal is to provide a systematic approach to intercept localization failures of camera localization systems based on DNNs architectures, by analyzing the generated uncertainties. We propose to exploit CMRNet, a DNN approach for multi-modal image to LiDAR map registration, by modifying its internal configuration to allow for extensive experimental activity on the KITTI dataset. The experimental section highlights CMRNet's major flaws and proves that our proposal does not compromise the original localization performances but also provides, at the same time, the necessary introspection measures that would allow end-users to act accordingly.
Bayesian neural networks (BNNs) have recently regained a significant amount of attention in the deep learning community due to the development of scalable approximate Bayesian inference techniques. There are several advantages of using a Bayesian approach: Parameter and prediction uncertainties become easily available, facilitating rigorous statistical analysis. Furthermore, prior knowledge can be incorporated. However, so far, there have been no scalable techniques capable of combining both structural and parameter uncertainty. In this paper, we apply the concept of model uncertainty as a framework for structural learning in BNNs and hence make inference in the joint space of structures/models and parameters. Moreover, we suggest an adaptation of a scalable variational inference approach with reparametrization of marginal inclusion probabilities to incorporate the model space constraints. Experimental results on a range of benchmark datasets show that we obtain comparable accuracy results with the competing models, but based on methods that are much more sparse than ordinary BNNs.
Effectively localizing root causes of performance anomalies is crucial to enabling the rapid recovery and loss mitigation of microservice applications in the cloud. Depending on the granularity of the causes that can be localized, a service operator may take different actions, e.g., restarting or migrating services if only faulty services can be localized (namely, coarse-grained) or scaling resources if specific indicative metrics on the faulty service can be localized (namely, fine-grained). Prior research mainly focuses on coarse-grained faulty service localization, and there is now a growing interest in fine-grained root cause localization to identify faulty services and metrics. Causal inference (CI) based methods have gained popularity recently for root cause localization, but currently used CI methods have limitations, such as the linear causal relations assumption and strict data distribution requirements. To tackle these challenges, we propose a framework named CausalRCA to implement fine-grained, automated, and real-time root cause localization. The CausalRCA uses a gradient-based causal structure learning method to generate weighted causal graphs and a root cause inference method to localize root cause metrics. We conduct coarse- and fine-grained root cause localization to evaluate the localization performance of CausalRCA. Experimental results show that CausalRCA has significantly outperformed baseline methods in localization accuracy, e.g., the average AC@3 of the fine-grained root cause metric localization in the faulty service is 0.719, and the average increase is 10% compared with baseline methods. In addition, the average Avg@5 has improved by 9.43%.
High-speed autonomous driving in off-road environments has immense potential for various applications, but it also presents challenges due to the complexity of vehicle-terrain interactions. In such environments, it is crucial for the vehicle to predict its motion and adjust its controls proactively in response to environmental changes, such as variations in terrain elevation. To this end, we propose a method for learning terrain-aware kinodynamic model which is conditioned on both proprioceptive and exteroceptive information. The proposed model generates reliable predictions of 6-degree-of-freedom motion and can even estimate contact interactions without requiring ground truth force data during training. This enables the design of a safe and robust model predictive controller through appropriate cost function design which penalizes sampled trajectories with unstable motion, unsafe interactions, and high levels of uncertainty derived from the model. We demonstrate the effectiveness of our approach through experiments on a simulated off-road track, showing that our proposed model-controller pair outperforms the baseline and ensures robust high-speed driving performance without control failure.
Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.
Optimal estimation and inference for both the minimizer and minimum of a convex regression function under the white noise and nonparametric regression models are studied in a non-asymptotic local minimax framework, where the performance of a procedure is evaluated at individual functions. Fully adaptive and computationally efficient algorithms are proposed and sharp minimax lower bounds are given for both the estimation accuracy and expected length of confidence intervals for the minimizer and minimum. The non-asymptotic local minimax framework brings out new phenomena in simultaneous estimation and inference for the minimizer and minimum. We establish a novel Uncertainty Principle that provides a fundamental limit on how well the minimizer and minimum can be estimated simultaneously for any convex regression function. A similar result holds for the expected length of the confidence intervals for the minimizer and minimum.
Objective technical skill assessment is crucial for effective training of new surgeons in robot-assisted surgery. With advancements in surgical training programs in both physical and virtual environments, it is imperative to develop generalizable methods for automatically assessing skills. In this paper, we propose a novel approach for skill assessment by transferring domain knowledge from labeled kinematic data to unlabeled data. Our approach leverages labeled data from common surgical training tasks such as Suturing, Needle Passing, and Knot Tying to jointly train a model with both labeled and unlabeled data. Pseudo labels are generated for the unlabeled data through an iterative manner that incorporates uncertainty estimation to ensure accurate labeling. We evaluate our method on a virtual reality simulated training task (Ring Transfer) using data from the da Vinci Research Kit (dVRK). The results show that trainees with robotic assistance have significantly higher expert probability compared to these without any assistance, p < 0.05, which aligns with previous studies showing the benefits of robotic assistance in improving training proficiency. Our method offers a significant advantage over other existing works as it does not require manual labeling or prior knowledge of the surgical training task for robot-assisted surgery.
Autonomous vehicles are equipped with a multi-modal sensor setup to enable the car to drive safely. The initial calibration of such perception sensors is a highly matured topic and is routinely done in an automated factory environment. However, an intriguing question arises on how to maintain the calibration quality throughout the vehicle's operating duration. Another challenge is to calibrate multiple sensors jointly to ensure no propagation of systemic errors. In this paper, we propose CaLiCa, an end-to-end deep self-calibration network which addresses the automatic calibration problem for pinhole camera and Lidar. We jointly predict the camera intrinsic parameters (focal length and distortion) as well as Lidar-Camera extrinsic parameters (rotation and translation), by regressing feature correlation between the camera image and the Lidar point cloud. The network is arranged in a Siamese-twin structure to constrain the network features learning to a mutually shared feature in both point cloud and camera (Lidar-camera constraint). Evaluation using KITTI datasets shows that we achieve 0.154 {\deg} and 0.059 m accuracy with a reprojection error of 0.028 pixel with a single-pass inference. We also provide an ablative study of how our end-to-end learning architecture offers lower terminal loss (21% decrease in rotation loss) compared to isolated calibration
Precise thigh muscle volumes are crucial to monitor the motor functionality of patients with diseases that may result in various degrees of thigh muscle loss. T1-weighted MRI is the default surrogate to obtain thigh muscle masks due to its contrast between muscle and fat signals. Deep learning approaches have recently been widely used to obtain these masks through segmentation. However, due to the insufficient amount of precise annotations, thigh muscle masks generated by deep learning approaches tend to misclassify intra-muscular fat (IMF) as muscle impacting the analysis of muscle volumetrics. As IMF is infiltrated inside the muscle, human annotations require expertise and time. Thus, precise muscle masks where IMF is excluded are limited in practice. To alleviate this, we propose a few-shot segmentation framework to generate thigh muscle masks excluding IMF. In our framework, we design a novel pseudo-label correction and evaluation scheme, together with a new noise robust loss for exploiting high certainty areas. The proposed framework only takes $1\%$ of the fine-annotated training dataset, and achieves comparable performance with fully supervised methods according to the experimental results.
Localization and mapping are key capabilities for self-driving vehicles. This paper describes a visual-inertial SLAM system that estimates an accurate and globally consistent trajectory of the vehicle and reconstructs a dense model of the free space surrounding the car. Towards this goal, we build on Kimera and extend it to use multiple cameras as well as external (e.g. wheel) odometry sensors, to obtain accurate and robust odometry estimates in real-world problems. Additionally, we propose an effective scheme for closing loops that circumvents the drawbacks of common alternatives based on the Perspective-n-Point method and also works with a single monocular camera. Finally, we develop a method for dense 3D mapping of the free space that combines a segmentation network for free-space detection with a homography-based dense mapping technique. We test our system on photo-realistic simulations and on several real datasets collected by a car prototype developed by the Ford Motor Company, spanning both indoor and outdoor parking scenarios. Our multi-camera system is shown to outperform state-of-the art open-source visual-inertial-SLAM pipelines (Vins-Fusion, ORB-SLAM3), and exhibits an average trajectory error under 1% of the trajectory length across more than 8 km of distance traveled (combined across all datasets). A video showcasing the system is available here: youtu.be/H8CpzDpXOI8
The remarkable success of deep learning has prompted interest in its application to medical diagnosis. Even tough state-of-the-art deep learning models have achieved human-level accuracy on the classification of different types of medical data, these models are hardly adopted in clinical workflows, mainly due to their lack of interpretability. The black-box-ness of deep learning models has raised the need for devising strategies to explain the decision process of these models, leading to the creation of the topic of eXplainable Artificial Intelligence (XAI). In this context, we provide a thorough survey of XAI applied to medical diagnosis, including visual, textual, and example-based explanation methods. Moreover, this work reviews the existing medical imaging datasets and the existing metrics for evaluating the quality of the explanations . Complementary to most existing surveys, we include a performance comparison among a set of report generation-based methods. Finally, the major challenges in applying XAI to medical imaging are also discussed.