亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents design methods for highly efficient optimisation of geometrically shaped constellations to maximise data throughput in optical communications. It describes methods to analytically calculate the information-theoretical loss and the gradient of this loss as a function of the input constellation shape. The gradients of the \ac{MI} and \ac{GMI} are critical to the optimisation of geometrically-shaped constellations. It presents the analytical derivative of the achievable information rate metrics with respect to the input constellation. The proposed method allows for improved design of higher cardinality and higher-dimensional constellations for optimising both linear and nonlinear fibre transmission throughput. Near-capacity achieving constellations with up to 8192 points for both 2 and 4 dimensions, with generalised mutual information (GMI) within 0.06 bit/2Dsymbol of additive white Gaussian noise channel (AWGN) capacity, are presented. Additionally, a design algorithm reducing the design computation time from days to minutes is introduced, allowing the presentation of optimised constellations for both linear AWGN and nonlinear fibre channels for a wide range of signal-to-noise ratios.

相關內容

Using Artificial Neural Networks (ANN) for nonlinear system identification has proven to be a promising approach, but despite of all recent research efforts, many practical and theoretical problems still remain open. Specifically, noise handling and models, issues of consistency and reliable estimation under minimisation of the prediction error are the most severe problems. The latter comes with numerous practical challenges such as explosion of the computational cost in terms of the number of data samples and the occurrence of instabilities during optimization. In this paper, we aim to overcome these issues by proposing a method which uses a truncated prediction loss and a subspace encoder for state estimation. The truncated prediction loss is computed by selecting multiple truncated subsections from the time series and computing the average prediction loss. To obtain a computationally efficient estimation method that minimizes the truncated prediction loss, a subspace encoder represented by an artificial neural network is introduced. This encoder aims to approximate the state reconstructability map of the estimated model to provide an initial state for each truncated subsection given past inputs and outputs. By theoretical analysis, we show that, under mild conditions, the proposed method is locally consistent, increases optimization stability, and achieves increased data efficiency by allowing for overlap between the subsections. Lastly, we provide practical insights and user guidelines employing a numerical example and state-of-the-art benchmark results.

Quantum queue-channels arise naturally in the context of buffering in quantum networks, wherein the noise suffered by the quantum states depends on the time spent waiting in the buffer. It has been shown that the upper-bound on the classical capacity of an additive queue-channel has a simple expression, and is achievable for the erasure and depolarizing channels [IEEE JSAIT, 1(2):432-444]. In this paper, we characterise the classical capacity for the class of unital qubit queue-channels, and show that a simple product (non-entangled) decoding strategy is capacity-achieving. As an intermediate result, we derive an explicit capacity achieving product decoding strategy for any i.i.d. unital qubit channel, which could be of independent interest. As an important special case, we also derive the capacity and optimal decoding strategies for a symmetric generalized amplitude damping (GAD) queue-channel. Our results provide useful insights towards designing practical quantum communication networks, and highlight the need to explicitly model the impact of buffering.

Quantized constant envelope (QCE) precoding, a new transmission scheme that only discrete QCE transmit signals are allowed at each antenna, has gained growing research interests due to its ability of reducing the hardware cost and the energy consumption of massive multiple-input multiple-output (MIMO) systems. However, the discrete nature of QCE transmit signals greatly complicates the precoding design. In this paper, we consider the QCE precoding problem for a massive MIMO system with phase shift keying (PSK) modulation and develop an efficient approach for solving the constructive interference (CI) based problem formulation. Our approach is based on a custom-designed (continuous) penalty model that is equivalent to the original discrete problem. Specifically, the penalty model relaxes the discrete QCE constraint and penalizes it in the objective with a negative $\ell_2$-norm term, which leads to a non-smooth non-convex optimization problem. To tackle it, we resort to our recently proposed alternating optimization (AO) algorithm. We show that the AO algorithm admits closed-form updates at each iteration when applied to our problem and thus can be efficiently implemented. Simulation results demonstrate the superiority of the proposed approach over the existing algorithms.

We present an alternating least squares type numerical optimization scheme to estimate conditionally-independent mixture models in $\mathbb{R}^n$, with minimal additional distributional assumptions. Following the method of moments, we tackle a coupled system of low-rank tensor decomposition problems. The steep costs associated with high-dimensional tensors are avoided, through the development of specialized tensor-free operations. Numerical experiments illustrate the performance of the algorithm and its applicability to various models and applications. In many cases the results exhibit improved reliability over the expectation-maximization algorithm, with similar time and storage costs. We also provide some supporting theory, establishing identifiability and local linear convergence.

This paper is concerned with developing an efficient numerical algorithm for fast implementation of the sparse grid method for computing the $d$-dimensional integral of a given function. The new algorithm, called the MDI-SG ({\em multilevel dimension iteration sparse grid}) method, implements the sparse grid method based on a dimension iteration/reduction procedure, it does not need to store the integration points, neither does it compute the function values independently at each integration point, instead, it re-uses the computation for function evaluations as much as possible by performing the function evaluations at all integration points in a cluster and iteratively along coordinate directions. It is shown numerically that the computational complexity (in terms of CPU time) of the proposed MDI-SG method is of polynomial order $O(Nd^3 )$ or better, compared to the exponential order $O(N(\log N)^{d-1})$ for the standard sparse grid method, where $N$ denotes the maximum number of integration points in each coordinate direction. As a result, the proposed MDI-SG method effectively circumvents the curse of dimensionality suffered by the standard sparse grid method for high-dimensional numerical integration.

The Additive-Multiplicative Matrix Channel (AMMC) was introduced by Silva, Kschischang and K\"otter in 2010 to model data transmission using random linear network coding. The input and output of the channel are $n\times m$ matrices over a finite field $\mathbb{F}_q$. On input the matrix $X$, the channel outputs $Y=A(X+W)$ where $A$ is a uniformly chosen $n\times n$ invertible matrix over $\mathbb{F}_q$ and where $W$ is a uniformly chosen $n\times m$ matrix over $\mathbb{F}_q$ of rank $t$. Silva \emph{et al} considered the case when $2n\leq m$. They determined the asymptotic capacity of the AMMC when $t$, $n$ and $m$ are fixed and $q\rightarrow\infty$. They also determined the leading term of the capacity when $q$ is fixed, and $t$, $n$ and $m$ grow linearly. We generalise these results, showing that the condition $2n\geq m$ can be removed. (Our formula for the capacity falls into two cases, one of which generalises the $2n\geq m$ case.) We also improve the error term in the case when $q$ is fixed.

Zero packet loss with bounded latency is necessary for many applications, such as industrial control networks, automotive Ethernet, and aircraft communication systems. Traditional networks cannot meet the such strict requirement, and thus Time-Sensitive Networking (TSN) emerges. TSN is a set of standards proposed by IEEE 802 for providing deterministic connectivity in terms of low packet loss, low packet delay variation, and guaranteed packet transport. However, to our knowledge, few existing TSN solutions can deterministically achieve zero packet loss with bounded latency. This paper fills in this blank by proposing a novel input-queueing TSN switching architecture, under which we design a TDMA-like scheduling policy (called M-TDMA) along with a sufficient condition and an EDF-like scheduling policy (called M-EDF) along with a different sufficient condition to achieve zero packet loss with bounded latency.

In the vertex connectivity problem, given an undirected $n$-vertex $m$-edge graph $G$, we need to compute the minimum number of vertices that can disconnect $G$ after removing them. This problem is one of the most well-studied graph problems. From 2019, a new line of work [Nanongkai et al.~STOC'19;SODA'20;STOC'21] has used randomized techniques to break the quadratic-time barrier and, very recently, culminated in an almost-linear time algorithm via the recently announced maxflow algorithm by Chen et al. In contrast, all known deterministic algorithms are much slower. The fastest algorithm [Gabow FOCS'00] takes $O(m(n+\min\{c^{5/2},cn^{3/4}\}))$ time where $c$ is the vertex connectivity. It remains open whether there exists a subquadratic-time deterministic algorithm for any constant $c>3$. In this paper, we give the first deterministic almost-linear time vertex connectivity algorithm for all constants $c$. Our running time is $m^{1+o(1)}2^{O(c^{2})}$ time, which is almost-linear for all $c=o(\sqrt{\log n})$. This is the first deterministic algorithm that breaks the $O(n^{2})$-time bound on sparse graphs where $m=O(n)$, which is known for more than 50 years ago [Kleitman'69]. Towards our result, we give a new reduction framework to vertex expanders which in turn exploits our new almost-linear time construction of mimicking network for vertex connectivity. The previous construction by Kratsch and Wahlstr\"{o}m [FOCS'12] requires large polynomial time and is randomized.

This paper is concerned with low-rank matrix optimization, which has found a wide range of applications in machine learning. This problem in the special case of matrix sensing has been studied extensively through the notion of Restricted Isometry Property (RIP), leading to a wealth of results on the geometric landscape of the problem and the convergence rate of common algorithms. However, the existing results can handle the problem in the case with a general objective function subject to noisy data only when the RIP constant is close to 0. In this paper, we develop a new mathematical framework to solve the above-mentioned problem with a far less restrictive RIP constant. We prove that as long as the RIP constant of the noiseless objective is less than $1/3$, any spurious local solution of the noisy optimization problem must be close to the ground truth solution. By working through the strict saddle property, we also show that an approximate solution can be found in polynomial time. We characterize the geometry of the spurious local minima of the problem in a local region around the ground truth in the case when the RIP constant is greater than $1/3$. Compared to the existing results in the literature, this paper offers the strongest RIP bound and provides a complete theoretical analysis on the global and local optimization landscapes of general low-rank optimization problems under random corruptions from any finite-variance family.

This work is concerned with approximating a trivariate function defined on a tensor-product domain via function evaluations. Combining tensorized Chebyshev interpolation with a Tucker decomposition of low multilinear rank yields function approximations that can be computed and stored very efficiently. The existing Chebfun3 algorithm [Hashemi and Trefethen, SIAM J. Sci. Comput., 39 (2017)]uses a similar format but the construction of the approximation proceeds indirectly, via a so called slice-Tucker decomposition. As a consequence, Chebfun3 sometimes uses unnecessarily many function evaluations and does not fully benefit from the potential of the Tucker decomposition to reduce, sometimes dramatically, the computational cost. We propose a novel algorithm Chebfun3F that utilizes univariate fibers instead of bivariate slices to construct the Tucker decomposition. Chebfun3F reduces the cost for the approximation in terms of the number of function evaluations for nearly all functions considered, typically by 75%, and sometimes by over 98%.

北京阿比特科技有限公司