亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Just-in-time adaptive interventions (JITAIs) are time-varying adaptive interventions that use frequent opportunities for the intervention to be adapted--weekly, daily, or even many times a day. The micro-randomized trial (MRT) has emerged for use in informing the construction of JITAIs. MRTs can be used to address research questions about whether and under what circumstances JITAI components are effective, with the ultimate objective of developing effective and efficient JITAI. The purpose of this article is to clarify why, when, and how to use MRTs; to highlight elements that must be considered when designing and implementing an MRT; and to review primary and secondary analyses methods for MRTs. We briefly review key elements of JITAIs and discuss a variety of considerations that go into planning and designing an MRT. We provide a definition of causal excursion effects suitable for use in primary and secondary analyses of MRT data to inform JITAI development. We review the weighted and centered least-squares (WCLS) estimator which provides consistent causal excursion effect estimators from MRT data. We describe how the WCLS estimator along with associated test statistics can be obtained using standard statistical software such as R (R Core Team, 2019). Throughout we illustrate the MRT design and analyses using the HeartSteps MRT, for developing a JITAI to increase physical activity among sedentary individuals. We supplement the HeartSteps MRT with two other MRTs, SARA and BariFit, each of which highlights different research questions that can be addressed using the MRT and experimental design considerations that might arise.

相關內容

We propose a rule-based statistical design for combination dose-finding trials with two agents. The Ci3+3 design is an extension of the i3+3 design with simple decision rules comparing the observed toxicity rates and equivalence intervals that define the maximum tolerated dose combination. Ci3+3 consists of two stages to allow fast and efficient exploration of the dose-combination space. Statistical inference is restricted to a beta-binomial model for dose evaluation, and the entire design is built upon a set of fixed rules. We show via simulation studies that the Ci3+3 design exhibits similar and comparable operating characteristics to more complex designs utilizing model-based inferences. We believe that the Ci3+3 design may provide an alternative choice to help simplify the design and conduct of combination dose-finding trials in practice.

Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various levels of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between a defender and an adversary. We characterize the defender's optimal attestation strategy in a variety of special cases. Finally, building on experimental results from our testbed, we evaluate our model and show that optimal strategic attestation can lead to significantly lower losses than naive baseline strategies.

Using observed language to understand interpersonal interactions is important in high-stakes decision making. We propose a causal research design for observational (non-experimental) data to estimate the natural direct and indirect effects of social group signals (e.g. race or gender) on speakers' responses with separate aspects of language as causal mediators. We illustrate the promises and challenges of this framework via a theoretical case study of the effect of an advocate's gender on interruptions from justices during U.S. Supreme Court oral arguments. We also discuss challenges conceptualizing and operationalizing causal variables such as gender and language that comprise of many components, and we articulate technical open challenges such as temporal dependence between language mediators in conversational settings.

A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the "impact remediation framework," is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.

A standard assumption for causal inference about the joint effects of time-varying treatment is that one has measured sufficient covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values, also known as "sequential randomization assumption (SRA)". SRA is often criticized as it requires one to accurately measure all confounders. Realistically, measured covariates can rarely capture all confounders with certainty. Often covariate measurements are at best proxies of confounders, thus invalidating inferences under SRA. In this paper, we extend the proximal causal inference (PCI) framework of Miao et al. (2018) to the longitudinal setting under a semiparametric marginal structural mean model (MSMM). PCI offers an opportunity to learn about joint causal effects in settings where SRA based on measured time-varying covariates fails, by formally accounting for the covariate measurements as imperfect proxies of underlying confounding mechanisms. We establish nonparametric identification with a pair of time-varying proxies and provide a corresponding characterization of regular and asymptotically linear estimators of the parameter indexing the MSMM, including a rich class of doubly robust estimators, and establish the corresponding semiparametric efficiency bound for the MSMM. Extensive simulation studies and a data application illustrate the finite sample behavior of proposed methods.

Discrete choice experiments are frequently used to quantify consumer preferences by having respondents choose between different alternatives. Choice experiments involving mixtures of ingredients have been largely overlooked in the literature, even though many products and services can be described as mixtures of ingredients. As a consequence, little research has been done on the optimal design of choice experiments involving mixtures. The only existing research has focused on D-optimal designs, which means that an estimation-based approach was adopted. However, in experiments with mixtures, it is crucial to obtain models that yield precise predictions for any combination of ingredient proportions. This is because the goal of mixture experiments generally is to find the mixture that optimizes the respondents' utility. As a result, the I-optimality criterion is more suitable for designing choice experiments with mixtures than the D-optimality criterion because the I-optimality criterion focuses on getting precise predictions with the estimated statistical model. In this paper, we study Bayesian I-optimal designs, compare them with their Bayesian D-optimal counterparts, and show that the former designs perform substantially better than the latter in terms of the variance of the predicted utility.

In many applications, it is of interest to assess the relative contribution of features (or subsets of features) toward the goal of predicting a response -- in other words, to gauge the variable importance of features. Most recent work on variable importance assessment has focused on describing the importance of features within the confines of a given prediction algorithm. However, such assessment does not necessarily characterize the prediction potential of features, and may provide a misleading reflection of the intrinsic value of these features. To address this limitation, we propose a general framework for nonparametric inference on interpretable algorithm-agnostic variable importance. We define variable importance as a population-level contrast between the oracle predictiveness of all available features versus all features except those under consideration. We propose a nonparametric efficient estimation procedure that allows the construction of valid confidence intervals, even when machine learning techniques are used. We also outline a valid strategy for testing the null importance hypothesis. Through simulations, we show that our proposal has good operating characteristics, and we illustrate its use with data from a study of an antibody against HIV-1 infection.

In this article, we develop methods for sample size and power calculations in four-level intervention studies when intervention assignment is carried out at any level, with a particular focus on cluster randomized trials (CRTs). CRTs involving four levels are becoming popular in health care research, where the effects are measured, for example, from evaluations (level 1) within participants (level 2) in divisions (level 3) that are nested in clusters (level 4). In such multi-level CRTs, we consider three types of intraclass correlations between different evaluations to account for such clustering: that of the same participant, that of different participants from the same division, and that of different participants from different divisions in the same cluster. Assuming arbitrary link and variance functions, with the proposed correlation structure as the true correlation structure, closed-form sample size formulas for randomization carried out at any level (including individually randomized trials within a four-level clustered structure) are derived based on the generalized estimating equations approach using the model-based variance and using the sandwich variance with an independence working correlation matrix. We demonstrate that empirical power corresponds well with that predicted by the proposed method for as few as 8 clusters, when data are analyzed using the matrix-adjusted estimating equations for the correlation parameters with a bias-corrected sandwich variance estimator, under both balanced and unbalanced designs.

In this paper, we examine the use case of general adversarial networks (GANs) in the field of marketing. In particular, we analyze how GAN models can replicate text patterns from successful product listings on Airbnb, a peer-to-peer online market for short-term apartment rentals. To do so, we define the Diehl-Martinez-Kamalu (DMK) loss function as a new class of functions that forces the model's generated output to include a set of user-defined keywords. This allows the general adversarial network to recommend a way of rewording the phrasing of a listing description to increase the likelihood that it is booked. Although we tailor our analysis to Airbnb data, we believe this framework establishes a more general model for how generative algorithms can be used to produce text samples for the purposes of marketing.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司