亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work proposes and analyses the application of a robotic platform as an digital skills assistant. analysing the ethical issues relating to the decision making process in the use case of online food shopping in order to inform a co design session on what, and how, the digital skills assistant should make decisions.

相關內容

機器人(英語:Robot)包括一切模擬人類行為或思想與模擬其他生物的機械(如機器狗,機器貓等)。狹義上對機器人的定義還有很多分類法及爭議,有些電腦程序甚至也被稱為機器人。在當代工業中,機器人指能自動運行任務的人造機器設備,用以取代或協助人類工作,一般會是機電設備,由計算機程序或是電子電路控制。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Considerable advancements have been made to tackle the misrepresentation of information derived from reference articles in the domains of fact-checking and faithful summarization. However, an unaddressed aspect remains - the identification of social media posts that manipulate information within associated news articles. This task presents a significant challenge, primarily due to the prevalence of personal opinions in such posts. We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information. To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles. Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance. Additionally, we have developed a simple yet effective basic model that outperforms LLMs significantly on the ManiTweet dataset. Finally, we have conducted an exploratory analysis of human-written tweets, unveiling intriguing connections between manipulation and the domain and factuality of news articles, as well as revealing that manipulated sentences are more likely to encapsulate the main story or consequences of a news outlet.

This paper provides a simulated laboratory for making use of Reinforcement Learning (RL) for chemical discovery. Since RL is fairly data intensive, training agents `on-the-fly' by taking actions in the real world is infeasible and possibly dangerous. Moreover, chemical processing and discovery involves challenges which are not commonly found in RL benchmarks and therefore offer a rich space to work in. We introduce a set of highly customizable and open-source RL environments, ChemGymRL, based on the standard Open AI Gym template. ChemGymRL supports a series of interconnected virtual chemical benches where RL agents can operate and train. The paper introduces and details each of these benches using well-known chemical reactions as illustrative examples, and trains a set of standard RL algorithms in each of these benches. Finally, discussion and comparison of the performances of several standard RL methods are provided in addition to a list of directions for future work as a vision for the further development and usage of ChemGymRL.

Testing autonomous driving systems for safety and reliability is extremely complex. A primary challenge is identifying the relevant test scenarios, especially the critical ones that may expose hazards or risks of harm to autonomous vehicles and other road users. There are several proposed methods and tools for critical scenario identification, while the industry practices, such as the selection, implementation, and limitations of the approaches, are not well understood. In this study, we conducted 10 interviews with 13 interviewees from 7 companies in autonomous driving in Sweden. We used thematic modeling to analyse and synthesize the interview data. We found there are little joint efforts in the industry to explore different approaches and tools, and every approach has its own limitations and weaknesses. To that end, we recommend combining different approaches available, collaborating among different stakeholders, and continuously learning the field of critical scenario identification and testing. The contributions of our study are the exploration and synthesis of the industry practices and related challenges for critical scenario identification and testing, and the potential increase of the industry relevance for future studies in related topics.

Automated synthesis of provably correct controllers for cyber-physical systems is crucial for deployment in safety-critical scenarios. However, hybrid features and stochastic or unknown behaviours make this problem challenging. We propose a method for synthesising controllers for Markov jump linear systems (MJLSs), a class of discrete-time models for cyber-physical systems, so that they certifiably satisfy probabilistic computation tree logic (PCTL) formulae. An MJLS consists of a finite set of stochastic linear dynamics and discrete jumps between these dynamics that are governed by a Markov decision process (MDP). We consider the cases where the transition probabilities of this MDP are either known up to an interval or completely unknown. Our approach is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS. We formalise this abstraction as an interval MDP (iMDP) for which we compute intervals of transition probabilities using sampling techniques from the so-called 'scenario approach', resulting in a probabilistically sound approximation. We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.

In [4], we introduced an extension of team semantics (causal teams) which assigns an interpretation to interventionist counterfactuals and causal notions based on them (as e.g. in Pearl's and Woodward's manipulationist approaches to causation). We now present a further extension of this framework (causal multiteams) which allows us to talk about probabilistic causal statements. We analyze the expressivity resources of two causal-probabilistic languages, one finitary and one infinitary. We show that many causal-probabilistic notions from the field of causal inference can be expressed already in the finitary language, and we prove a normal form theorem that throws new light on Pearl's ``ladder of causation''. On the other hand, we provide an exact semantic characterization of the infinitary language, which shows that this language captures precisely those causal-probabilistic statements that do not commit us to any specific interpretation of probability; and we prove that no usual, countable language is apt for this task.

Reinforcement learning (RL), imitation learning (IL), and task and motion planning (TAMP) have demonstrated impressive performance across various robotic manipulation tasks. However, these approaches have been limited to learning simple behaviors in current real-world manipulation benchmarks, such as pushing or pick-and-place. To enable more complex, long-horizon behaviors of an autonomous robot, we propose to focus on real-world furniture assembly, a complex, long-horizon robot manipulation task that requires addressing many current robotic manipulation challenges to solve. We present FurnitureBench, a reproducible real-world furniture assembly benchmark aimed at providing a low barrier for entry and being easily reproducible, so that researchers across the world can reliably test their algorithms and compare them against prior work. For ease of use, we provide 200+ hours of pre-collected data (5000+ demonstrations), 3D printable furniture models, a robotic environment setup guide, and systematic task initialization. Furthermore, we provide FurnitureSim, a fast and realistic simulator of FurnitureBench. We benchmark the performance of offline RL and IL algorithms on our assembly tasks and demonstrate the need to improve such algorithms to be able to solve our tasks in the real world, providing ample opportunities for future research.

The application of machine learning models can be significantly impeded by the occurrence of distributional shifts, as the assumption of homogeneity between the population of training and testing samples in machine learning and statistics may not be feasible in practical situations. One way to tackle this problem is to use invariant learning, such as invariant risk minimization (IRM), to acquire an invariant representation that aids in generalization with distributional shifts. This paper develops methods for obtaining distribution-free prediction regions to describe uncertainty estimates for invariant representations, accounting for the distribution shifts of data from different environments. Our approach involves a weighted conformity score that adapts to the specific environment in which the test sample is situated. We construct an adaptive conformal interval using the weighted conformity score and prove its conditional average under certain conditions. To demonstrate the effectiveness of our approach, we conduct several numerical experiments, including simulation studies and a practical example using real-world data.

Disaster summarization approaches provide an overview of the important information posted during disaster events on social media platforms, such as, Twitter. However, the type of information posted significantly varies across disasters depending on several factors like the location, type, severity, etc. Verification of the effectiveness of disaster summarization approaches still suffer due to the lack of availability of good spectrum of datasets along with the ground-truth summary. Existing approaches for ground-truth summary generation (ground-truth for extractive summarization) relies on the wisdom and intuition of the annotators. Annotators are provided with a complete set of input tweets from which a subset of tweets is selected by the annotators for the summary. This process requires immense human effort and significant time. Additionally, this intuition-based selection of the tweets might lead to a high variance in summaries generated across annotators. Therefore, to handle these challenges, we propose a hybrid (semi-automated) approach (PORTRAIT) where we partly automate the ground-truth summary generation procedure. This approach reduces the effort and time of the annotators while ensuring the quality of the created ground-truth summary. We validate the effectiveness of PORTRAIT on 5 disaster events through quantitative and qualitative comparisons of ground-truth summaries generated by existing intuitive approaches, a semi-automated approach, and PORTRAIT. We prepare and release the ground-truth summaries for 5 disaster events which consist of both natural and man-made disaster events belonging to 4 different countries. Finally, we provide a study about the performance of various state-of-the-art summarization approaches on the ground-truth summaries generated by PORTRAIT using ROUGE-N F1-scores.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司