The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple areas of research within complexity and beyond, but the current best upper bound is essentially the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA '17). Our main results are an $\Omega(n)$ lower bound on PC degree or SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors of bounded rank. We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the rank of two matrices, or deriving $BA=I$ from $AB=I$. As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof system, PC+Inv, which allows as derivation rules all substitution instances of the implication $AB=I \rightarrow BA=I$. We conjecture that even PC+Inv cannot solve TI in polynomial time either, but leave open getting lower bounds on PC+Inv for any system of equations, let alone those for TI. We also highlight many other open questions about proof complexity approaches to TI.
Let ${\cal G}$ be a minor-closed graph class and let $G$ be an $n$-vertex graph. We say that $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}$. Our first result is an algorithm that decides whether $G$ is a $k$-apex of ${\cal G}$ in time $2^{{\sf poly}(k)}\cdot n^2$, where ${\sf poly}$ is a polynomial function depending on ${\cal G}$. This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020], whose running time was $2^{{\sf poly}(k)}\cdot n^3$. The elimination distance of $G$ to ${\cal G}$, denoted by ${\sf ed}_{\cal G}(G)$, is the minimum number of rounds required to reduce each connected component of $G$ to a graph in ${\cal G}$ by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] provided an FPT-algorithm, with parameter $k$, to decide whether ${\sf ed}_{\cal G}(G)\leq k$. However, its dependence on $k$ is not explicit. We extend the techniques used in the first algorithm to decide whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{2^{2^{{\sf poly}(k)}}}\cdot n^2$. This is the first algorithm for this problem with an explicit parametric dependence in $k$. In the special case where ${\cal G}$ excludes some apex-graph as a minor, we give two alternative algorithms, running in time $2^{2^{{\cal O}(k^2\log k)}}\cdot n^2$ and $2^{{\sf poly}(k)}\cdot n^3$ respectively, where $c$ and ${\sf poly}$ depend on ${\cal G}$. As a stepping stone for these algorithms, we provide an algorithm that decides whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{{\cal O}({\sf tw}\cdot k+{\sf tw}\log{\sf tw})}\cdot n$, where ${\sf tw}$ is the treewidth of $G$. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs ${\cal E}_k({\cal G})=\{G\mid{\sf ed}_{\cal G}(G)\leq k\}$.
Satisfiability Modulo Theories (SMT) solvers check the satisfiability of quantifier-free first-order logic formulas. We consider the theory of non-linear real arithmetic where the formulae are logical combinations of polynomial constraints. Here a commonly used tool is the Cylindrical Algebraic Decomposition (CAD) to decompose real space into cells where the constraints are truth-invariant through the use of projection polynomials. An improved approach is to repackage the CAD theory into a search-based algorithm: one that guesses sample points to satisfy the formula, and generalizes guesses that conflict constraints to cylindrical cells around samples which are avoided in the continuing search. Such an approach can lead to a satisfying assignment more quickly, or conclude unsatisfiability with fewer cells. A notable example of this approach is Jovanovi\'c and de Moura's NLSAT algorithm. Since these cells are produced locally to a sample we might need fewer projection polynomials than the traditional CAD projection. The original NLSAT algorithm reduced the set a little; while Brown's single cell construction reduced it much further still. However, the shape and size of the cell produced depends on the order in which the polynomials are considered. This paper proposes a method to construct such cells levelwise, i.e. built level-by-level according to a variable ordering. We still use a reduced number of projection polynomials, but can now consider a variety of different reductions and use heuristics to select the projection polynomials in order to optimise the shape of the cell under construction. We formulate all the necessary theory as a proof system: while not a common presentation for work in this field, it allows an elegant decoupling of heuristics from the algorithm and its proof of correctness.
We study the distribution of a fully connected neural network with random Gaussian weights and biases in which the hidden layer widths are proportional to a large constant $n$. Under mild assumptions on the non-linearity, we obtain quantitative bounds on normal approximations valid at large but finite $n$ and any fixed network depth. Our theorems show both for the finite-dimensional distributions and the entire process, that the distance between a random fully connected network (and its derivatives) to the corresponding infinite width Gaussian process scales like $n^{-\gamma}$ for $\gamma>0$, with the exponent depending on the metric used to measure discrepancy. Our bounds are strictly stronger in terms of their dependence on network width than any previously available in the literature; in the one-dimensional case, we also prove that they are optimal, i.e., we establish matching lower bounds.
This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself, and propose a simple stopping rule applicable to any optimization method which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.
Given a graph $G = (V, E)$, a non-empty set $S \subseteq V$ is a defensive alliance, if for every vertex $v \in S$, the majority of its closed neighbours are in $S$, that is, $|N_G[v] \cap S| \geq |N_G[v] \setminus S|$. The decision version of the problem is known to be NP-Complete even when restricted to split and bipartite graphs. The problem is \textit{fixed-parameter tractable} for the parameters solution size, vertex cover number and neighbourhood diversity. For the parameters treewidth and feedback vertex set number, the problem is W[1]-hard. \\ \hspace*{2em} In this paper, we study the defensive alliance problem for graphs with bounded degree. We show that the problem is \textit{polynomial-time solvable} on graphs with maximum degree at most 5 and NP-Complete on graphs with maximum degree 6. This rules out the fixed-parameter tractability of the problem for the parameter maximum degree of the graph. We also consider the problem from the standpoint of parameterized complexity. We provide an FPT algorithm using the Integer Linear Programming approach for the parameter distance to clique. We also answer an open question posed in \cite{AG2} by providing an FPT algorithm for the parameter twin cover.
We propose a novel approach to soundly combining linear types with effect handlers. Linear type systems statically ensure that resources such as file handles are used exactly once. Effect handlers provide a modular programming abstraction for implementing features ranging from exceptions to concurrency. Whereas linear type systems bake in the assumption that continuations are invoked exactly once, effect handlers allow continuations to be discarded or invoked more than once. This mismatch leads to soundness bugs in existing systems such as the programming language Links, which combines linearity (for session types) with effect handlers. We introduce control flow linearity as a means to ensure that continuations are used in accordance with the linearity of any resources they capture, ruling out such soundness bugs. We formalise control flow linearity in a System F-style core calculus Feffpop equipped with linear types, effect types, and effect handlers. We define a linearity-aware semantics to formally prove that Feffpop preserves the integrity of linear values in the sense that no linear value is discarded or duplicated. In order to show that control flow linearity can be made practical, we adapt Links based on the design of Feffpop, in doing so fixing a long-standing soundness bug. Finally, to better expose the potential of control flow linearity, we define an ML-style core calculus Qeffpop, based on qualified types, which requires no programmer provided annotations, and instead relies entirely on type inference to infer control flow linearity. Both linearity and effects are captured by qualified types. Qeffpop overcomes a number of practical limitations of Feffpop, supporting abstraction over linearity, linearity dependencies between type variables, and a much more fine-grained notion of control flow linearity.
This note is an attempt to unconditionally prove the existence of weak one way functions (OWF). Starting from a provably intractable decision problem $L_D$ (whose existence is nonconstructively assured from the well-known discrete time-hierarchy theorem from complexity theory), we construct another intractable decision problem $L\subseteq \{0,1\}^*$ that has its words scattered across $\{0,1\}^\ell$ at a relative frequency $p(\ell)$, for which upper and lower bounds can be worked out. The value $p(\ell)$ is computed from the density of the language within $\{0,1\}^\ell$ divided by the total word count $2^\ell$. It corresponds to the probability of retrieving a yes-instance of a decision problem upon a uniformly random draw from $\{0,1\}^\ell$. The trick to find a language with known bounds on $p(\ell)$ relies on switching from $L_D$ to $L_0:=L_D\cap L'$, where $L'$ is an easy-to-decide language with a known density across $\{0,1\}^*$. In defining $L'$ properly (and upon a suitable G\"odel numbering), the hardness of deciding $L_D\cap L'$ is inherited from $L_D$, while its density is controlled by that of $L'$. The lower and upper approximation of $p(\ell)$ then let us construct an explicit threshold function (as in random graph theory) that can be used to efficiently and intentionally sample yes- or no-instances of the decision problem (language) $L_0$ (however, without any auxiliary information that could ease the decision like a polynomial witness). In turn, this allows to construct a weak OWF that encodes a bit string $w\in\{0,1\}^*$ by efficiently (in polynomial time) emitting a sequence of randomly constructed intractable decision problems, whose answers correspond to the preimage $w$.
A power series being given as the solution of a linear differential equation with appropriate initial conditions, minimization consists in finding a non-trivial linear differential equation of minimal order having this power series as a solution. This problem exists in both homogeneous and inhomogeneous variants; it is distinct from, but related to, the classical problem of factorization of differential operators. Recently, minimization has found applications in Transcendental Number Theory, more specifically in the computation of non-zero algebraic points where Siegel's $E$-functions take algebraic values. We present algorithms and implementations for these questions, and discuss examples and experiments.
The linear bandit problem has been studied for many years in both stochastic and adversarial settings. Designing an algorithm that can optimize the environment without knowing the loss type attracts lots of interest. \citet{LeeLWZ021} propose an algorithm that actively detects the loss type and then switches between different algorithms specially designed for specific settings. However, such an approach requires meticulous designs to perform well in all environments. Follow-the-regularized-leader (FTRL) is another type of popular algorithm that can adapt to different environments. This algorithm is of simple design and the regret bounds are shown to be optimal in traditional multi-armed bandit problems compared with the detect-switch type. Designing an FTRL-type algorithm for linear bandits is an important question that has been open for a long time. In this paper, we prove that the FTRL algorithm with a negative entropy regularizer can achieve the best-of-three-world results for the linear bandit problem. Our regret bounds achieve the same or nearly the same order as the previous detect-switch type algorithm but with a much simpler algorithmic design.
We consider the problem of satisfiability of sets of constraints in a given set of finite uniform hypergraphs. While the problem under consideration is similar in nature to the problem of satisfiability of constraints in graphs, the classical complexity reduction to finite-domain CSPs that was used in the proof of the complexity dichotomy for such problems cannot be used as a black box in our case. We therefore introduce an algorithmic technique inspired by classical notions from the theory of finite-domain CSPs, and prove its correctness based on symmetries that depend on a linear order that is external to the structures under consideration. Our second main result is a P/NP-complete complexity dichotomy for such problems over many sets of uniform hypergraphs. The proof is based on the translation of the problem into the framework of constraint satisfaction problems (CSPs) over infinite uniform hypergraphs. Our result confirms in particular the Bodirsky-Pinsker conjecture for CSPs of first-order reducts of some homogeneous hypergraphs. This forms a vast generalization of previous work by Bodirsky-Pinsker (STOC'11) and Bodirsky-Martin-Pinsker-Pongr\'acz (ICALP'16) on graph satisfiability.