亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we propose a method for the compression of the coupling matrix in volume\hyp surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix\hyp vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix\hyp vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with $1$ mm$^3$ voxel resolution, could be performed in $\sim 33$ seconds in a GPU, after compressing the associated coupling matrix from $\sim 80$ TB to $\sim 43$ MB.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Following recent interest by the community, the scaling of the minimal singular value of a Vandermonde matrix with nodes forming clusters on the length scale of Rayleigh distance on the complex unit circle is studied. Using approximation theoretic properties of exponential sums, we show that the decay is only single exponential in the size of the largest cluster, and the bound holds for arbitrary small minimal separation distance. We also obtain a generalization of well-known bounds on the smallest eigenvalue of the generalized prolate matrix in the multi-cluster geometry. Finally, the results are extended to the entire spectrum.

In this paper, a shallow Ritz-type neural network for solving elliptic problems with delta function singular sources on an interface is developed. There are three novel features in the present work; namely, (i) the delta function singularity is naturally removed, (ii) level set function is introduced as a feather input, (iii) it is completely shallow consisting of only one hidden layer. We first introduce the energy functional of the problem and then transform the contribution of singular sources to a regular surface integral along the interface. In such a way the delta function singularity can be naturally removed without the introduction of discrete delta function that is commonly used in traditional regularization methods such as the well-known immersed boundary method. The original problem is then reformulated as a minimization problem. We propose a shallow Ritz-type neural network with one hidden layer to approximate the global minimizer of the energy functional. As a result, the network is trained by minimizing the loss function that is a discrete version of the energy. In addition, we include the level set function of the interface as a feature input and find that it significantly improves the training efficiency and accuracy. We perform a series of numerical tests to demonstrate the accuracy of the present network as well as its capability for problems in irregular domains and in higher dimensions.

Multiplier, which has a key role in many different applications, is a time-consuming, energy-intensive computation block. Approximate computing is a practical design paradigm that attempts to improve hardware efficacy while keeping computation quality satisfactory. A novel multicolumn 3,3:2 inexact compressor is presented in this paper. It takes three partial products from two adjacent columns each for rapid partial product reduction. The proposed inexact compressor and its derivates enable us to design a high-speed approximate multiplier. Then, another ultra-fast, high-efficient approximate multiplier is achieved by means a systematic truncation strategy. The proposed multipliers accumulate partial products in only two stages, one fewer stage than other approximate multipliers in the literature. Implementation results by Synopsys Design Compiler and 45 nm technology node demonstrates nearly 11.11% higher speed for the second proposed design over the fastest existing approximate multiplier. Furthermore, the new approximate multipliers are applied to the image processing application of image sharpening. Their performance in this application is highly satisfactory. It is shown in this paper that the error pattern of an approximate multiplier, in addition to the mean error distance and error rate, has a direct effect on the outcomes of the image processing application.

Markov-modulated L\'evy processes lead to matrix integral equations of the kind $ A_0 + A_1X+A_2 X^2+A_3(X)=0$ where $A_0$, $A_1$, $A_2$ are given matrix coefficients, while $A_3(X)$ is a nonlinear function, expressed in terms of integrals involving the exponential of the matrix $X$ itself. In this paper we propose some numerical methods for the solution of this class of matrix equations, perform a theoretical convergence analysis and show the effectiveness of the new methods by means of a wide numerical experimentation.

In boundary element methods (BEM) in $\mathbb{R}^3$, matrix elements and right hand sides are typically computed via integration over line, triangle and tetrahedral volume elements. When the problem size gets large, the resulting linear systems are often solved iteratively via Krylov methods, with fast multipole methods (FMM) used to accelerate the matrix vector products needed. The integrals are often computed via numerical or analytical quadrature. When FMM acceleration is used, most entries of the matrix never need be computed explicitly - they are only needed in terms of their contribution to the multipole expansion coefficients. Furthermore, the two parts of this resulting algorithm - the integration and the FMM matrix vector product - are both approximate, and their errors have to be matched to avoid wasteful computations, or poorly controlled error. We propose a new fast method for generation of multipole expansion coefficients for the fields produced by the integration of the single and double layer potentials on surface triangles; charge distributions over line segments; and regular functions over tetrahedra in the volume; so that the overall method is well integrated into the FMM, with controlled error. The method is based on recursive computations of the multipole moments for $O(1)$ cost per moment with a low asymptotic constant. The method is developed for the Laplace Green's function in ${\mathbb R}^3$. The derived recursions are tested both for accuracy and performance.

Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3x3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

Deep neural network models used for medical image segmentation are large because they are trained with high-resolution three-dimensional (3D) images. Graphics processing units (GPUs) are widely used to accelerate the trainings. However, the memory on a GPU is not large enough to train the models. A popular approach to tackling this problem is patch-based method, which divides a large image into small patches and trains the models with these small patches. However, this method would degrade the segmentation quality if a target object spans multiple patches. In this paper, we propose a novel approach for 3D medical image segmentation that utilizes the data-swapping, which swaps out intermediate data from GPU memory to CPU memory to enlarge the effective GPU memory size, for training high-resolution 3D medical images without patching. We carefully tuned parameters in the data-swapping method to obtain the best training performance for 3D U-Net, a widely used deep neural network model for medical image segmentation. We applied our tuning to train 3D U-Net with full-size images of 192 x 192 x 192 voxels in brain tumor dataset. As a result, communication overhead, which is the most important issue, was reduced by 17.1%. Compared with the patch-based method for patches of 128 x 128 x 128 voxels, our training for full-size images achieved improvement on the mean Dice score by 4.48% and 5.32 % for detecting whole tumor sub-region and tumor core sub-region, respectively. The total training time was reduced from 164 hours to 47 hours, resulting in 3.53 times of acceleration.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

Network Virtualization is one of the most promising technologies for future networking and considered as a critical IT resource that connects distributed, virtualized Cloud Computing services and different components such as storage, servers and application. Network Virtualization allows multiple virtual networks to coexist on same shared physical infrastructure simultaneously. One of the crucial keys in Network Virtualization is Virtual Network Embedding, which provides a method to allocate physical substrate resources to virtual network requests. In this paper, we investigate Virtual Network Embedding strategies and related issues for resource allocation of an Internet Provider(InP) to efficiently embed virtual networks that are requested by Virtual Network Operators(VNOs) who share the same infrastructure provided by the InP. In order to achieve that goal, we design a heuristic Virtual Network Embedding algorithm that simultaneously embeds virtual nodes and virtual links of each virtual network request onto physic infrastructure. Through extensive simulations, we demonstrate that our proposed scheme improves significantly the performance of Virtual Network Embedding by enhancing the long-term average revenue as well as acceptance ratio and resource utilization of virtual network requests compared to prior algorithms.

We propose a temporally coherent generative model addressing the super-resolution problem for fluid flows. Our work represents a first approach to synthesize four-dimensional physics fields with neural networks. Based on a conditional generative adversarial network that is designed for the inference of three-dimensional volumetric data, our model generates consistent and detailed results by using a novel temporal discriminator, in addition to the commonly used spatial one. Our experiments show that the generator is able to infer more realistic high-resolution details by using additional physical quantities, such as low-resolution velocities or vorticities. Besides improvements in the training process and in the generated outputs, these inputs offer means for artistic control as well. We additionally employ a physics-aware data augmentation step, which is crucial to avoid overfitting and to reduce memory requirements. In this way, our network learns to generate advected quantities with highly detailed, realistic, and temporally coherent features. Our method works instantaneously, using only a single time-step of low-resolution fluid data. We demonstrate the abilities of our method using a variety of complex inputs and applications in two and three dimensions.

北京阿比特科技有限公司