The support structure is required to successfully create structural parts in the powder bed fusion process of additive manufacturing. In this study, we present the topology optimization of the support structure that improves heat dissipation in the building process. First, we construct a numerical method that obtains the temperature field in the building process represented by the transient heat conduction phenomenon with volume heat flux. Next, we formulate an optimization problem for maximizing heat dissipation and develop an optimization algorithm incorporating the level-set-based topology optimization. A sensitivity of the objective function is derived using the adjoint variable method. Finally, several numerical examples are provided to demonstrate the effectiveness and validity of the proposed method.
In this paper, we derive improved a priori error estimates for families of hybridizable interior penalty discontinuous Galerkin (H-IP) methods using a variable penalty for second-order elliptic problems. The strategy is to use a penalization function of the form $\mathcal{O}(1/h^{1+\delta})$, where $h$ denotes the mesh size and $\delta$ is a user-dependent parameter. We then quantify its direct impact on the convergence analysis, namely, the (strong) consistency, discrete coercivity, and boundedness (with $h^{\delta}$-dependency), and we derive updated error estimates for both discrete energy- and $L^{2}$-norms. The originality of the error analysis relies specifically on the use of conforming interpolants of the exact solution. All theoretical results are supported by numerical evidence.
We consider zero-sum games on infinite graphs, with objectives specified as sets of infinite words over some alphabet of colors. A well-studied class of objectives is the one of $\omega$-regular objectives, due to its relation to many natural problems in theoretical computer science. We focus on the strategy complexity question: given an objective, how much memory does each player require to play as well as possible? A classical result is that finite-memory strategies suffice for both players when the objective is $\omega$-regular. We show a reciprocal of that statement: when both players can play optimally with a chromatic finite-memory structure (i.e., whose updates can only observe colors) in all infinite game graphs, then the objective must be $\omega$-regular. This provides a game-theoretic characterization of $\omega$-regular objectives, and this characterization can help in obtaining memory bounds. Moreover, a by-product of our characterization is a new one-to-two-player lift: to show that chromatic finite-memory structures suffice to play optimally in two-player games on infinite graphs, it suffices to show it in the simpler case of one-player games on infinite graphs. We illustrate our results with the family of discounted-sum objectives, for which $\omega$-regularity depends on the value of some parameters.
Unfitted (also known as embedded or immersed) finite element approximations of partial differential equations are very attractive because they have much lower geometrical requirements than standard body-fitted formulations. These schemes do not require body-fitted unstructured mesh generation. In turn, the numerical integration becomes more involved, because one has to compute integrals on portions of cells (only the interior part). In practice, these methods are restricted to level-set (implicit) geometrical representations, which drastically limit their application. Complex geometries in industrial and scientific problems are usually determined by (explicit) boundary representations. In this work, we propose an automatic computational framework for the discretisation of partial differential equations on domains defined by oriented boundary meshes. The geometrical kernel that connects functional and geometry representations generates a two-level integration mesh and a refinement of the boundary mesh that enables the straightforward numerical integration of all the terms in unfitted finite elements. The proposed framework has been applied with success on all analysis-suitable oriented boundary meshes (almost 5,000) in the Thingi10K database and combined with an unfitted finite element formulation to discretise partial differential equations on the corresponding domains.
Feature attribution is often loosely presented as the process of selecting a subset of relevant features as a rationale of a prediction. This lack of clarity stems from the fact that we usually do not have access to any notion of ground-truth attribution and from a more general debate on what good interpretations are. In this paper we propose to formalise feature selection/attribution based on the concept of relaxed functional dependence. In particular, we extend our notions to the instance-wise setting and derive necessary properties for candidate selection solutions, while leaving room for task-dependence. By computing ground-truth attributions on synthetic datasets, we evaluate many state-of-the-art attribution methods and show that, even when optimised, some fail to verify the proposed properties and provide wrong solutions.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.