Schedule-based transit assignment describes congestion in public transport services by modeling the interactions of passenger behavior in a time-space network built directly on a transit schedule. This study investigates the theoretical properties of scheduled-based Markovian transit assignment with boarding queues. When queues exist at a station, passenger boarding flows are loaded according to the residual vehicle capacity, which depends on the flows of passengers already on board with priority. An equilibrium problem is formulated under this nonseparable link cost structure as well as explicit capacity constraints. The network generalized extreme value (NGEV) model, a general class of additive random utility models with closed-form expression, is used to describe the path choice behavior of passengers. A set of formulations for the equilibrium problem is presented, including variational inequality and fixed-point problems, from which the day-to-day dynamics of passenger flows and costs are derived. It is shown that Lyapunov functions associated with the dynamics can be obtained and guarantee the desirable solution properties of existence, uniqueness, and global stability of the equilibria. In terms of dealing with stochastic equilibrium with explicit capacity constraints and non-separable link cost functions, the present theoretical analysis is a generalization of the existing day-to-day dynamics in the context of general traffic assignment.
Task allocation can enable effective coordination of multi-robot teams to accomplish tasks that are intractable for individual robots. However, existing approaches to task allocation often assume that task requirements or reward functions are known and explicitly specified by the user. In this work, we consider the challenge of forming effective coalitions for a given heterogeneous multi-robot team when task reward functions are unknown. To this end, we first formulate a new class of problems, dubbed COncurrent Constrained Online optimization of Allocation (COCOA). The COCOA problem requires online optimization of coalitions such that the unknown rewards of all the tasks are simultaneously maximized using a given multi-robot team with constrained resources. To address the COCOA problem, we introduce an online optimization algorithm, named Concurrent Multi-Task Adaptive Bandits (CMTAB), that leverages and builds upon continuum-armed bandit algorithms. Experiments involving detailed numerical simulations and a simulated emergency response task reveal that CMTAB can effectively trade-off exploration and exploitation to simultaneously and efficiently optimize the unknown task rewards while respecting the team's resource constraints.
The relativistic hydrodynamics (RHD) equations have three crucial intrinsic physical constraints on the primitive variables: positivity of pressure and density, and subluminal fluid velocity. However, numerical simulations can violate these constraints, leading to nonphysical results or even simulation failure. Designing genuinely physical-constraint-preserving (PCP) schemes is very difficult, as the primitive variables cannot be explicitly reformulated using conservative variables due to relativistic effects. In this paper, we propose three efficient Newton--Raphson (NR) methods for robustly recovering primitive variables from conservative variables. Importantly, we rigorously prove that these NR methods are always convergent and PCP, meaning they preserve the physical constraints throughout the NR iterations. The discovery of these robust NR methods and their PCP convergence analyses are highly nontrivial and technical. As an application, we apply the proposed NR methods to design PCP finite volume Hermite weighted essentially non-oscillatory (HWENO) schemes for solving the RHD equations. Our PCP HWENO schemes incorporate high-order HWENO reconstruction, a PCP limiter, and strong-stability-preserving time discretization. We rigorously prove the PCP property of the fully discrete schemes using convex decomposition techniques. Moreover, we suggest the characteristic decomposition with rescaled eigenvectors and scale-invariant nonlinear weights to enhance the performance of the HWENO schemes in simulating large-scale RHD problems. Several demanding numerical tests are conducted to demonstrate the robustness, accuracy, and high resolution of the proposed PCP HWENO schemes and to validate the efficiency of our NR methods.
According to the fundamental theorems of welfare economics, any competitive equilibrium is Pareto efficient. Unfortunately, competitive equilibrium prices only exist under strong assumptions such as perfectly divisible goods and convex preferences. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example, but similar problems appear in many real-world markets, which has led to a growing literature in market design. Power markets use heuristic pricing rules based on the dual of a relaxed allocation problem today. With increasing levels of renewables, these rules have come under scrutiny as they lead to high out-of-market side-payments to some participants and to inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our theoretical and experimental findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.
Intelligent reflecting surfaces (IRSs) are being widely investigated as a potential low-cost and energy-efficient alternative to active relays for improving coverage in next-generation cellular networks. However, technical constraints in the configuration of IRSs should be taken into account in the design of scheduling solutions and the assessment of their performance. To this end, we examine an IRS-assisted time division multiple access (TDMA) cellular network where the reconfiguration of the IRS incurs a communication cost; thus, we aim at limiting the number of reconfigurations over time. Along these lines, we propose a clustering-based heuristic scheduling scheme that maximizes the cell sum capacity, subject to a fixed number of reconfigurations within a TDMA frame. First, the best configuration of each user equipment (UE), in terms of joint beamforming and optimal IRS configuration, is determined using an iterative algorithm. Then, we propose different clustering techniques to divide the UEs into subsets sharing the same sub-optimal IRS configuration, derived through distance- and capacity-based algorithms. Finally, UEs within the same cluster are scheduled accordingly. We provide extensive numerical results for different propagation scenarios, IRS sizes, and phase shifters quantization constraints, showing the effectiveness of our approach in supporting multi-user IRS systems with practical constraints.
This paper proposes a new one-sided matching market model in which every agent has a cost function that is allowed to take a negative value. Our model aims to capture the situation where some agents can profit by exchanging their obtained goods with other agents. We formulate such a model based on a graphical one-sided matching market, introduced by Massand and Simon [Massand and Simon, IJCAI 2019]. We examine the existence of stable outcomes for such a market. We prove that there is an instance that has no core-stable allocation. On the other hand, we guarantee the existence of two-stable allocations even where exchange costs exist. However, it is PLS-hard to find a two-stable allocation for a market with exchange costs even if the maximum degree of the graph is five.
Extremely large-scale array (XL-array) has emerged as a promising technology to enhance the spectrum efficiency and spatial resolution in future wireless networks, leading to a fundamental paradigm shift from conventional far-field communications towards the new near-field communications. Different from the existing works that mostly considered simultaneous wireless information and power transfer (SWIPT) in the far field, we consider in this paper a new and practical scenario, called mixed near- and far-field SWIPT, in which energy harvesting (EH) and information decoding (ID) receivers are located in the near- and far-field regions of the XL-array base station (BS), respectively. Specifically, we formulate an optimization problem to maximize the weighted sum-power harvested at all EH receivers by jointly designing the BS beam scheduling and power allocation, under the constraints on the ID sum-rate and BS transmit power. To solve this nonconvex optimization problem, an efficient algorithm is proposed to obtain a suboptimal solution by leveraging the binary variable elimination and successive convex approximation methods. Numerical results demonstrate that our proposed joint design achieves substantial performance gain over other benchmark schemes.
Energy or time-efficient scheduling is of particular interest in wireless communications, with applications in sensor network design, cellular communications, and more. In many cases, wireless packets to be transmitted have deadlines that upper bound the times before their transmissions, to avoid staleness of transmitted data. In this paper, motivated by emerging applications in security-critical communications, age of information, and molecular communications, we expand the wireless packet scheduling framework to scenarios which involve strict limits on the time after transmission, in addition to the conventional pre-transmission delay constraints. As a result, we introduce the scheduling problem under two-sided individual deadlines, which captures systems wherein transmitting too late (stale) and too early (fresh) are both undesired. Subject to said two-sided deadlines, we provably solve the optimal (energy-minimizing) offline packet scheduling problem. Leveraging this result and the inherent duality between rate and energy, we propose and solve the completion-time-optimal offline packet scheduling problem under the introduced two-sided framework. Overall, the developed theoretical framework can be utilized in applications wherein packets have finite lifetimes both before and after their transmission (e.g., security-critical applications), or applications with joint strict constraints on packet delay and information freshness.
Offloading computation to nearby edge/fog computing nodes, including the ones carried by moving vehicles, e.g., vehicular fog nodes (VFN), has proved to be a promising approach for enabling low-latency and compute-intensive mobility applications, such as cooperative and autonomous driving. This work considers vehicular fog computing scenarios where the clients of computation offloading services try to minimize their own costs while deciding which VFNs to offload their tasks. We focus on decentralized multi-agent decision-making in a repeated unknown game where each agent, e.g., service client, can observe only its own action and realized cost. In other words, each agent is unaware of the game composition or even the existence of opponents. We apply a completely uncoupled learning rule to generalize the decentralized decision-making algorithm presented in \cite{Cho2021} for the multi-agent case. The multi-agent solution proposed in this work can capture the unknown offloading cost variations susceptive to resource congestion under an adversarial framework where each agent may take implicit cost estimation and suitable resource choice adapting to the dynamics associated with volatile supply and demand. According to the evaluation via simulation, this work reveals that such individual perturbations for robustness to uncertainty and adaptation to dynamicity ensure a certain level of optimality in terms of social welfare, e.g., converging the actual sequence of play with unknown and asymmetric attributes and lowering the correspondent cost in social welfare due to the self-interested behaviors of agents.
We study the approximation of integrals $\int_D f(\boldsymbol{x}^\top A) \mathrm{d} \mu(\boldsymbol{x})$, where $A$ is a matrix, by quasi-Monte Carlo (QMC) rules $N^{-1} \sum_{k=0}^{N-1} f(\boldsymbol{x}_k^\top A)$. We are interested in cases where the main cost arises from calculating the products $\boldsymbol{x}_k^\top A$. We design QMC rules for which the computation of $\boldsymbol{x}_k^\top A$, $k = 0, 1, \ldots, N-1$, can be done fast, and for which the error of the QMC rule is similar to the standard QMC error. We do not require that $A$ has any particular structure. For instance, this approach can be used when approximating the expected value of a function with a multivariate normal random variable with a given covariance matrix, or when approximating the expected value of the solution of a PDE with random coefficients. The speed-up of the computation time is sometimes better and sometimes worse than the fast QMC matrix-vector product from [Dick, Kuo, Le Gia, and Schwab, Fast QMC Matrix-Vector Multiplication, SIAM J. Sci. Comput. 37 (2015)]. As in that paper, our approach applies to (polynomial) lattice point sets, but also to digital nets (we are currently not aware of any approach which allows one to apply the fast method from the aforementioned paper of Dick, Kuo, Le Gia, and Schwab to digital nets). Our method does not use FFT, instead we use repeated values in the quadrature points to derive a reduction in the computation time. This arises from the reduced CBC construction of lattice rules and polynomial lattice rules. The reduced CBC construction has been shown to reduce the computation time for the CBC construction. Here we show that it can also be used to also reduce the computation time of the QMC rule.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.