This paper presents a randomized algorithm for the problem of single-source shortest paths on directed graphs with real (both positive and negative) edge weights. Given an input graph with $n$ vertices and $m$ edges, the algorithm completes in $\tilde{O}(mn^{8/9})$ time with high probability. For real-weighted graphs, this result constitutes the first asymptotic improvement over the classic $O(mn)$-time algorithm variously attributed to Shimbel, Bellman, Ford, and Moore.
This paper develops a general asymptotic theory of local polynomial (LP) regression for spatial data observed at irregularly spaced locations in a sampling region $R_n \subset \mathbb{R}^d$. We adopt a stochastic sampling design that can generate irregularly spaced sampling sites in a flexible manner including both pure increasing and mixed increasing domain frameworks. We first introduce a nonparametric regression model for spatial data defined on $\mathbb{R}^d$ and then establish the asymptotic normality of LP estimators with general order $p \geq 1$. We also propose methods for constructing confidence intervals and establishing uniform convergence rates of LP estimators. Our dependence structure conditions on the underlying processes cover a wide class of random fields such as L\'evy-driven continuous autoregressive moving average random fields. As an application of our main results, we discuss a two-sample testing problem for mean functions and their partial derivatives.
A posteriori reduced-order models, e.g. proper orthogonal decomposition, are essential to affordably tackle realistic parametric problems. They rely on a trustful training set, that is a family of full-order solutions (snapshots) representative of all possible outcomes of the parametric problem. Having such a rich collection of snapshots is not, in many cases, computationally viable. A strategy for data augmentation, designed for parametric laminar incompressible flows, is proposed to enrich poorly populated training sets. The goal is to include in the new, artificial snapshots emerging features, not present in the original basis, that do enhance the quality of the reduced-order solution. The methodologies devised are based on exploiting basic physical principles, such as mass and momentum conservation, to devise physically-relevant, artificial snapshots at a fraction of the cost of additional full-order solutions. Interestingly, the numerical results show that the ideas exploiting only mass conservation (i.e., incompressibility) are not producing significant added value with respect to the standard linear combinations of snapshots. Conversely, accounting for the linearized momentum balance via the Oseen equation does improve the quality of the resulting approximation and therefore is an effective data augmentation strategy in the framework of viscous incompressible laminar flows.
We revisit $k$-Dominating Set, one of the first problems for which a tight $n^k-o(1)$ conditional lower bound (for $k\ge 3$), based on SETH, was shown (P\u{a}tra\c{s}cu and Williams, SODA 2007). However, the underlying reduction creates dense graphs, raising the question: how much does the sparsity of the graph affect its fine-grained complexity? We first settle the fine-grained complexity of $k$-Dominating Set in terms of both the number of nodes $n$ and number of edges $m$. Specifically, we show an $mn^{k-2-o(1)}$ lower bound based on SETH, for any dependence of $m$ on $n$. This is complemented by an $mn^{k-2+o(1)}$-time algorithm for all $k\ge 3$. For the $k=2$ case, we give a randomized algorithm that employs a Bloom-filter inspired hashing to improve the state of the art of $n^{\omega+o(1)}$ to $m^{\omega/2+o(1)}$. If $\omega=2$, this yields a conditionally tight bound for all $k\ge 2$. To study if $k$-Dominating Set is special in its sensitivity to sparsity, we consider a class of very related problems. The $k$-Dominating Set problem belongs to a type of first-order definable graph properties that we call monochromatic basic problems. These problems are the natural monochromatic variants of the basic problems that were proven complete for the class FOP of first-order definable properties (Gao, Impagliazzo, Kolokolova, and Williams, TALG 2019). We show that among these problems, $k$-Dominating Set is the only one whose fine-grained complexity decreases in sparse graphs. Only for the special case of reflexive properties, is there an additional basic problem that can be solved faster than $n^{k\pm o(1)}$ on sparse graphs. For the natural variant of distance-$r$ $k$-dominating set, we obtain a hardness of $n^{k-o(1)}$ under SETH for every $r\ge 2$ already on sparse graphs, which is tight for sufficiently large $k$.
Flight Trajectory Prediction (FTP) is an essential task in Air Traffic Control (ATC), which can assist air traffic controllers in managing airspace more safely and efficiently. Existing approaches generally perform multi-horizon FTP tasks in an autoregressive manner, thereby suffering from error accumulation and low-efficiency problems. In this paper, a novel framework, called FlightBERT++, is proposed to i) forecast multi-horizon flight trajectories directly in a non-autoregressive way, and ii) improve the limitation of the binary encoding (BE) representation in the FlightBERT. Specifically, the FlightBERT++ is implemented by a generalized encoder-decoder architecture, in which the encoder learns the temporal-spatial patterns from historical observations and the decoder predicts the flight status for the future horizons. Compared with conventional architecture, an innovative horizon-aware contexts generator is dedicatedly designed to consider the prior horizon information, which further enables non-autoregressive multi-horizon prediction. Moreover, a differential prompted decoder is proposed to enhance the capability of the differential predictions by leveraging the stationarity of the differential sequence. The experimental results on a real-world dataset demonstrated that the FlightBERT++ outperformed the competitive baselines in both FTP performance and computational efficiency.
Our goal is a modern approach to answering questions via systematic reasoning where answers are supported by human interpretable proof trees grounded in an NL corpus of authoritative facts. Such a system would help alleviate the challenges of interpretability and hallucination with modern LMs, and the lack of grounding of current explanation methods (e.g., Chain-of-Thought). This paper proposes a new take on Prolog-based inference engines, where we replace handcrafted rules with a combination of neural language modeling, guided generation, and semiparametric dense retrieval. Our implementation, NELLIE, is the first system to demonstrate fully interpretable, end-to-end grounded QA as entailment tree proof search, going beyond earlier work explaining known-to-be-true facts from text. In experiments, NELLIE outperforms a similar-sized state-of-the-art reasoner [Tafjord et al., 2022] while producing knowledge-grounded explanations. We also find NELLIE can exploit both semi-structured and NL text corpora to guide reasoning. Together these suggest a new way to jointly reap the benefits of both modern neural methods and traditional symbolic reasoning.
In this paper we address how complex social communities emerge from local decisions by individuals with limited attention and knowledge. This problem is critical; if we understand community formation mechanisms, it may be possible to intervene to improve social welfare. We propose an interpretable, novel model for attributed community formation driven by resource-bounded individuals' strategic, selfish behavior. In our stylized model, attributed individuals act strategically in two dimensions: attribute and network structure. Agents are endowed with limited attention, and communication costs limit the number of active connections. In each time step, each agent proposes a new friendship. Agents then accept proposals, decline proposals, or remove friends, consistent with their strategy to maximize payoff. We identify criteria (number of stable triads) for convergence to some community structure and prove that our community formation model converges to a stable network. Ablations justify the ecological validity of our model and show that each aspect of the model is essential. Our empirical results on a physical world microfinance community demonstrate excellent model fits compared to baseline models.
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.
When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.