$\text{TT}^{\Box}_{{\mathcal C}}$ is a generic family of effectful, extensional type theories with a forcing interpretation parameterized by modalities. This paper identifies a subclass of $\text{TT}^{\Box}_{{\mathcal C}}$ theories that internally realizes continuity principles through stateful computations, such as reference cells. The principle of continuity is a seminal property that holds for a number of intuitionistic theories such as System T. Roughly speaking, it states that functions on real numbers only need approximations of these numbers to compute. Generally, continuity principles have been justified using semantical arguments, but it is known that the modulus of continuity of functions can be computed using effectful computations such as exceptions or reference cells. In this paper, the modulus of continuity of the functionals on the Baire space is directly computed using the stateful computations enabled internally in the theory.
Let $X$ be a set of items of size $n$ , which may contain some defective items denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The test outcome is $1$ (positive) if $Q$ contains at least one defective item, i.e., $Q\cap I \neq \emptyset$, and $0$ (negative) otherwise. We give a novel approach to obtaining tight lower bounds in non-adaptive randomized group testing. Employing this new method, we can prove the following result. Any non-adaptive randomized algorithm that, for any set of defective items $I$, with probability at least $2/3$, returns an estimate of the number of defective items $|I|$ to within a constant factor requires at least $\Omega({\log n})$ tests. Our result matches the upper bound of $O(\log n)$ and solves the open problem posed by Damaschke and Sheikh Muhammad.
A non-zero $\mathbb{F}$-valued $\mathbb{F}$-linear map on a finite dimensional $\mathbb{F}$-algebra is called an $\mathbb{F}$-valued trace if its kernel does not contain any non-zero ideals. However, given an $\mathbb{F}$-algebra such a map may not always exist. We find an infinite class of finite-dimensional commutative $\mathbb{F}$-algebras which admit an $\mathbb{F}$-valued trace. In fact, in these cases, we explicitly construct a trace map. The existence of an $\mathbb{F}$-valued trace on a finite dimensional commutative $\mathbb{F}$-algebra induces a non-degenerate bilinear form on the $\mathbb{F}$-algebra which may be helpful both theoretically and computationally. In this article, we suggest a couple of applications of an $\mathbb{F}$-valued trace map of an $\mathbb{F}$-algebra to algebraic coding theory.
Consider the problem of estimating a random variable $X$ from noisy observations $Y = X+ Z$, where $Z$ is standard normal, under the $L^1$ fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on $X$ that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution $P_{X|Y=y}$ is symmetric for all $y$, then $X$ must follow a Gaussian distribution. Additionally, we consider other $L^p$ losses and observe the following phenomenon: for $p \in [1,2]$, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for $p \in (2,\infty)$, infinitely many prior distributions on $X$ can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
The problem of recovering a signal $\boldsymbol{x} \in \mathbb{R}^n$ from a quadratic system $\{y_i=\boldsymbol{x}^\top\boldsymbol{A}_i\boldsymbol{x},\ i=1,\ldots,m\}$ with full-rank matrices $\boldsymbol{A}_i$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging. With i.i.d. standard Gaussian matrices $\boldsymbol{A}_i$, this paper addresses the high-dimensional case where $m\ll n$ by incorporating prior knowledge of $\boldsymbol{x}$. First, we consider a $k$-sparse $\boldsymbol{x}$ and introduce the thresholded Wirtinger flow (TWF) algorithm that does not require the sparsity level $k$. TWF comprises two steps: the spectral initialization that identifies a point sufficiently close to $\boldsymbol{x}$ (up to a sign flip) when $m=O(k^2\log n)$, and the thresholded gradient descent (with a good initialization) that produces a sequence linearly converging to $\boldsymbol{x}$ with $m=O(k\log n)$ measurements. Second, we explore the generative prior, assuming that $\boldsymbol{x}$ lies in the range of an $L$-Lipschitz continuous generative model with $k$-dimensional inputs in an $\ell_2$-ball of radius $r$. We develop the projected gradient descent (PGD) algorithm that also comprises two steps: the projected power method that provides an initial vector with $O\big(\sqrt{\frac{k \log L}{m}}\big)$ $\ell_2$-error given $m=O(k\log(Lnr))$ measurements, and the projected gradient descent that refines the $\ell_2$-error to $O(\delta)$ at a geometric rate when $m=O(k\log\frac{Lrn}{\delta^2})$. Experimental results corroborate our theoretical findings and show that: (i) our approach for the sparse case notably outperforms the existing provable algorithm sparse power factorization; (ii) leveraging the generative prior allows for precise image recovery in the MNIST dataset from a small number of quadratic measurements.
In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.
We propose a new algorithm for variance reduction when estimating $f(X_T)$ where $X$ is the solution to some stochastic differential equation and $f$ is a test function. The new estimator is $(f(X^1_T) + f(X^2_T))/2$, where $X^1$ and $X^2$ have same marginal law as $X$ but are pathwise correlated so that to reduce the variance. The optimal correlation function $\rho$ is approximated by a deep neural network and is calibrated along the trajectories of $(X^1, X^2)$ by policy gradient and reinforcement learning techniques. Finding an optimal coupling given marginal laws has links with maximum optimal transport.
We consider the problem of locating a nearest descriptor system of prescribed reduced order to a descriptor system with large order with respect to the ${\mathcal L}_\infty$ norm. Widely employed approaches such as the balanced truncation and best Hankel norm approximation for this ${\mathcal L}_\infty$ model reduction problem are usually expensive and yield solutions that are not optimal, not even locally. We propose approaches based on the minimization of the ${\mathcal L}_\infty$ objective by means of smooth optimization techniques. As we illustrate, direct applications of smooth optimization techniques are not feasible, since the optimization techniques converge at best at a linear rate requiring too many evaluations of the costly ${\mathcal L}_\infty$-norm objective to be practical. We replace the original large-scale system with a system of smaller order that interpolates the original system at points on the imaginary axis, and minimize the ${\mathcal L}_\infty$ objective after this replacement. The smaller system is refined by interpolating at additional imaginary points determined based on the local minimizer of the ${\mathcal L}_\infty$ objective, and the optimization is repeated. We argue the framework converges at a quadratic rate under smoothness and nondegeneracy assumptions, and describe how asymptotic stability constraints on the reduced system sought can be incorporated into our approach. The numerical experiments on benchmark examples illustrate that the approach leads to locally optimal solutions to the ${\mathcal L}_\infty$ model reduction problem, and the convergence occurs quickly for descriptors systems of order a few ten thousands.
We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
We study the classical problem of approximating a non-decreasing function $f: \mathcal{X} \to \mathcal{Y}$ in $L^p(\mu)$ norm by sequentially querying its values, for known compact real intervals $\mathcal{X}$, $\mathcal{Y}$ and a known probability measure $\mu$ on $\cX$. For any function~$f$ we characterize the minimum number of evaluations of $f$ that algorithms need to guarantee an approximation $\hat{f}$ with an $L^p(\mu)$ error below $\epsilon$ after stopping. Unlike worst-case results that hold uniformly over all $f$, our complexity measure is dependent on each specific function $f$. To address this problem, we introduce GreedyBox, a generalization of an algorithm originally proposed by Novak (1992) for numerical integration. We prove that GreedyBox achieves an optimal sample complexity for any function $f$, up to logarithmic factors. Additionally, we uncover results regarding piecewise-smooth functions. Perhaps as expected, the $L^p(\mu)$ error of GreedyBox decreases much faster for piecewise-$C^2$ functions than predicted by the algorithm (without any knowledge on the smoothness of $f$). A simple modification even achieves optimal minimax approximation rates for such functions, which we compute explicitly. In particular, our findings highlight multiple performance gaps between adaptive and non-adaptive algorithms, smooth and piecewise-smooth functions, as well as monotone or non-monotone functions. Finally, we provide numerical experiments to support our theoretical results.
This work proposes $\texttt{NePhi}$, a neural deformation model which results in approximately diffeomorphic transformations. In contrast to the predominant voxel-based approaches, $\texttt{NePhi}$ represents deformations functionally which allows for memory-efficient training and inference. This is of particular importance for large volumetric registrations. Further, while medical image registration approaches representing transformation maps via multi-layer perceptrons have been proposed, $\texttt{NePhi}$ facilitates both pairwise optimization-based registration $\textit{as well as}$ learning-based registration via predicted or optimized global and local latent codes. Lastly, as deformation regularity is a highly desirable property for most medical image registration tasks, $\texttt{NePhi}$ makes use of gradient inverse consistency regularization which empirically results in approximately diffeomorphic transformations. We show the performance of $\texttt{NePhi}$ on two 2D synthetic datasets as well as on real 3D lung registration. Our results show that $\texttt{NePhi}$ can achieve similar accuracies as voxel-based representations in a single-resolution registration setting while using less memory and allowing for faster instance-optimization.