亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A non-zero $\mathbb{F}$-valued $\mathbb{F}$-linear map on a finite dimensional $\mathbb{F}$-algebra is called an $\mathbb{F}$-valued trace if its kernel does not contain any non-zero ideals. However, given an $\mathbb{F}$-algebra such a map may not always exist. We find an infinite class of finite-dimensional commutative $\mathbb{F}$-algebras which admit an $\mathbb{F}$-valued trace. In fact, in these cases, we explicitly construct a trace map. The existence of an $\mathbb{F}$-valued trace on a finite dimensional commutative $\mathbb{F}$-algebra induces a non-degenerate bilinear form on the $\mathbb{F}$-algebra which may be helpful both theoretically and computationally. In this article, we suggest a couple of applications of an $\mathbb{F}$-valued trace map of an $\mathbb{F}$-algebra to algebraic coding theory.

相關內容

The $\boldsymbol{\beta}$-model for random graphs is commonly used for representing pairwise interactions in a network with degree heterogeneity. Going beyond pairwise interactions, Stasi et al. (2014) introduced the hypergraph $\boldsymbol{\beta}$-model for capturing degree heterogeneity in networks with higher-order (multi-way) interactions. In this paper we initiate the rigorous study of the hypergraph $\boldsymbol{\beta}$-model with multiple layers, which allows for hyperedges of different sizes across the layers. To begin with, we derive the rates of convergence of the maximum likelihood (ML) estimate and establish their minimax rate optimality. We also derive the limiting distribution of the ML estimate and construct asymptotically valid confidence intervals for the model parameters. Next, we consider the goodness-of-fit problem in the hypergraph $\boldsymbol{\beta}$-model. Specifically, we establish the asymptotic normality of the likelihood ratio (LR) test under the null hypothesis, derive its detection threshold, and also its limiting power at the threshold. Interestingly, the detection threshold of the LR test turns out to be minimax optimal, that is, all tests are asymptotically powerless below this threshold. The theoretical results are further validated in numerical experiments. In addition to developing the theoretical framework for estimation and inference for hypergraph $\boldsymbol{\beta}$-models, the above results fill a number of gaps in the graph $\boldsymbol{\beta}$-model literature, such as the minimax optimality of the ML estimates and the non-null properties of the LR test, which, to the best of our knowledge, have not been studied before.

In this paper, we examine a finite element approximation of the steady $p(\cdot)$-Navier-Stokes equations ($p(\cdot)$ is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index $p(\cdot)$. Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.

We present polynomial-time SDP-based algorithms for the following problem: For fixed $k \leq \ell$, given a real number $\epsilon>0$ and a graph $G$ that admits a $k$-colouring with a $\rho$-fraction of the edges coloured properly, it returns an $\ell$-colouring of $G$ with an $(\alpha \rho - \epsilon)$-fraction of the edges coloured properly in polynomial time in $G$ and $1 / \epsilon$. Our algorithms are based on the algorithms of Frieze and Jerrum [Algorithmica'97] and of Karger, Motwani and Sudan [JACM'98]. For $k = 2, \ell = 3$, our algorithm achieves an approximation ratio $\alpha = 1$, which is the best possible. When $k$ is fixed and $\ell$ grows large, our algorithm achieves an approximation ratio of $\alpha = 1 - o(1 / \ell)$. When $k, \ell$ are both large, our algorithm achieves an approximation ratio of $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell) - O(1 / k^2)$; if we fix $d = \ell - k$ and allow $k, \ell$ to grow large, this is $\alpha = 1 - 1 / \ell + 2 \ln \ell / k \ell - o(\ln \ell / k \ell)$. By extending the results of Khot, Kindler, Mossel and O'Donnell [SICOMP'07] to the promise setting, we show that for large $k$ and $\ell$, assuming the Unique Games Conjecture, it is \NP-hard to achieve an approximation ratio $\alpha$ greater than $1 - 1 / \ell + 2 \ln \ell / k \ell + o(\ln \ell / k \ell)$, provided that $\ell$ is bounded by a function that is $o(\exp(\sqrt[3]{k}))$. For the case where $d = \ell - k$ is fixed, this bound matches the performance of our algorithm up to $o(\ln \ell / k \ell)$.

Given a graph $G=(V,E)$ on $n$ vertices and an assignment of colours to its edges, a set of edges $S \subseteq E$ is said to be rainbow if edges from $S$ have pairwise different colours assigned to them. In this paper, we investigate rainbow spanning trees in randomly coloured random $G_{k-out}$ graphs.

We introduce, motivate and study $\varepsilon$-almost collision-flat (ACFU) universal hash functions $f:\mathcal X\times\mathcal S\to\mathcal A$. Their main property is that the number of collisions in any given value is bounded. Each $\varepsilon$-ACFU hash function is an $\varepsilon$-almost universal (AU) hash function, and every $\varepsilon$-almost strongly universal (ASU) hash function is an $\varepsilon$-ACFU hash function. We study how the size of the seed set $\mathcal S$ depends on $\varepsilon,|\mathcal X|$ and $|\mathcal A|$. Depending on how these parameters are interrelated, seed-minimizing ACFU hash functions are equivalent to mosaics of balanced incomplete block designs (BIBDs) or to duals of mosaics of quasi-symmetric block designs; in a third case, mosaics of transversal designs and nets yield seed-optimal ACFU hash functions, but a full characterization is missing. By either extending $\mathcal S$ or $\mathcal X$, it is possible to obtain an $\varepsilon$-ACFU hash function from an $\varepsilon$-AU hash function or an $\varepsilon$-ASU hash function, generalizing the construction of mosaics of designs from a given resolvable design (Gnilke, Greferath, Pav{\v c}evi\'c, Des. Codes Cryptogr. 86(1)). The concatenation of an ASU and an ACFU hash function again yields an ACFU hash function. Finally, we motivate ACFU hash functions by their applicability in privacy amplification.

In the Maximum Independent Set of Objects problem, we are given an $n$-vertex planar graph $G$ and a family $\mathcal{D}$ of $N$ objects, where each object is a connected subgraph of $G$. The task is to find a subfamily $\mathcal{F} \subseteq \mathcal{D}$ of maximum cardinality that consists of pairwise disjoint objects. This problem is $\mathsf{NP}$-hard and is equivalent to the problem of finding the maximum number of pairwise disjoint polygons in a given family of polygons in the plane. As shown by Adamaszek et al. (J. ACM '19), the problem admits a \emph{quasi-polynomial time approximation scheme} (QPTAS): a $(1-\varepsilon)$-approximation algorithm whose running time is bounded by $2^{\mathrm{poly}(\log(N),1/\epsilon)} \cdot n^{\mathcal{O}(1)}$. Nevertheless, to the best of our knowledge, in the polynomial-time regime only the trivial $\mathcal{O}(N)$-approximation is known for the problem in full generality. In the restricted setting where the objects are pseudolines in the plane, Fox and Pach (SODA '11) gave an $N^{\varepsilon}$-approximation algorithm with running time $N^{2^{\tilde{\mathcal{O}}(1/\varepsilon)}}$, for any $\varepsilon>0$. In this work, we present an $\text{OPT}^{\varepsilon}$-approximation algorithm for the problem that runs in time $N^{\tilde{\mathcal{O}}(1/\varepsilon^2)} n^{\mathcal{O}(1)}$, for any $\varepsilon>0$, thus improving upon the result of Fox and Pach both in terms of generality and in terms of the running time. Our approach combines the methodology of Voronoi separators, introduced by Marx and Pilipczuk (TALG '22), with a new analysis of the approximation factor.

We give a simple and computationally efficient algorithm that, for any constant $\varepsilon>0$, obtains $\varepsilon T$-swap regret within only $T = \mathsf{polylog}(n)$ rounds; this is an exponential improvement compared to the super-linear number of rounds required by the state-of-the-art algorithm, and resolves the main open problem of [Blum and Mansour 2007]. Our algorithm has an exponential dependence on $\varepsilon$, but we prove a new, matching lower bound. Our algorithm for swap regret implies faster convergence to $\varepsilon$-Correlated Equilibrium ($\varepsilon$-CE) in several regimes: For normal form two-player games with $n$ actions, it implies the first uncoupled dynamics that converges to the set of $\varepsilon$-CE in polylogarithmic rounds; a $\mathsf{polylog}(n)$-bit communication protocol for $\varepsilon$-CE in two-player games (resolving an open problem mentioned by [Babichenko-Rubinstein'2017, Goos-Rubinstein'2018, Ganor-CS'2018]; and an $\tilde{O}(n)$-query algorithm for $\varepsilon$-CE (resolving an open problem of [Babichenko'2020] and obtaining the first separation between $\varepsilon$-CE and $\varepsilon$-Nash equilibrium in the query complexity model). For extensive-form games, our algorithm implies a PTAS for $\mathit{normal}$ $\mathit{form}$ $\mathit{correlated}$ $\mathit{equilibria}$, a solution concept often conjectured to be computationally intractable (e.g. [Stengel-Forges'08, Fujii'23]).

We study least-squares trace regression when the parameter is the sum of a $r$-low-rank and a $s$-sparse matrices and a fraction $\epsilon$ of the labels is corrupted. For subgaussian distributions, we highlight three design properties. The first, termed $\PP$, handles additive decomposition and follows from a product process inequality. The second, termed $\IP$, handles both label contamination and additive decomposition. It follows from Chevet's inequality. The third, termed $\MP$, handles the interaction between the design and featured-dependent noise. It follows from a multiplier process inequality. Jointly, these properties entail the near-optimality of a tractable estimator with respect to the effective dimensions $d_{\eff,r}$ and $d_{\eff,s}$ for the low-rank and sparse components, $\epsilon$ and the failure probability $\delta$. This rate has the form $$ \mathsf{r}(n,d_{\eff,r}) + \mathsf{r}(n,d_{\eff,s}) + \sqrt{(1+\log(1/\delta))/n} + \epsilon\log(1/\epsilon). $$ Here, $\mathsf{r}(n,d_{\eff,r})+\mathsf{r}(n,d_{\eff,s})$ is the optimal uncontaminated rate, independent of $\delta$. Our estimator is adaptive to $(s,r,\epsilon,\delta)$ and, for fixed absolute constant $c>0$, it attains the mentioned rate with probability $1-\delta$ uniformly over all $\delta\ge\exp(-cn)$. Disconsidering matrix decomposition, our analysis also entails optimal bounds for a robust estimator adapted to the noise variance. Finally, we consider robust matrix completion. We highlight a new property for this problem: one can robustly and optimally estimate the incomplete matrix regardless of the \emph{magnitude of the corruption}. Our estimators are based on ``sorted'' versions of Huber's loss. We present simulations matching the theory. In particular, it reveals the superiority of ``sorted'' Huber loss over the classical Huber's loss.

Given a gamma population with known shape parameter $\alpha$, we develop a general theory for estimating a function $g(\cdot)$ of the scale parameter $\beta$ with bounded variance. We begin by defining a sequential sampling procedure with $g(\cdot)$ satisfying some desired condition in proposing the stopping rule, and show the procedure enjoys appealing asymptotic properties. After these general conditions, we substitute $g(\cdot)$ with specific functions including the gamma mean, the gamma variance, the gamma rate parameter, and a gamma survival probability as four possible illustrations. For each illustration, Monte Carlo simulations are carried out to justify the remarkable performance of our proposed sequential procedure. This is further substantiated with a real data study on weights of newly born babies.

Computing the proximal operator of the sparsity-promoting piece-wise exponential (PiE) penalty $1-e^{-|x|/\sigma}$ with a given shape parameter $\sigma>0$, which is treated as a popular nonconvex surrogate of $\ell_0$-norm, is fundamental in feature selection via support vector machines, image reconstruction, zero-one programming problems, compressed sensing, etc. Due to the nonconvexity of PiE, for a long time, its proximal operator is frequently evaluated via an iteratively reweighted $\ell_1$ algorithm, which substitutes PiE with its first-order approximation, however, the obtained solutions only are the critical point. Based on the exact characterization of the proximal operator of PiE, we explore how the iteratively reweighted $\ell_1$ solution deviates from the true proximal operator in certain regions, which can be explicitly identified in terms of $\sigma$, the initial value and the regularization parameter in the definition of the proximal operator. Moreover, the initial value can be adaptively and simply chosen to ensure that the iteratively reweighted $\ell_1$ solution belongs to the proximal operator of PiE.

北京阿比特科技有限公司