亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting the presence of major depressive disorder (MDD) using behavioural and cognitive signals is a highly non-trivial task. The heterogeneous clinical profile of MDD means that any given speech, facial expression and/or observed cognitive pattern may be associated with a unique combination of depressive symptoms. Conventional discriminative machine learning models potentially lack the complexity to robustly model this heterogeneity. Bayesian networks, however, may instead be well-suited to such a scenario. These networks are probabilistic graphical models that efficiently describe the joint probability distribution over a set of random variables by explicitly capturing their conditional dependencies. This framework provides further advantages over standard discriminative modelling by offering the possibility to incorporate expert opinion in the graphical structure of the models, generating explainable model predictions, informing about the uncertainty of predictions, and naturally handling missing data. In this study, we apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語音合成 · 數據增強 · 相似度 · 控制器 ·
2023 年 8 月 16 日

Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems can help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech, which is not readily available for dysarthric talkers. This paper presents a new dysarthric speech synthesis method for the purpose of ASR training data augmentation. Differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels are important components for dysarthric speech modeling, synthesis, and augmentation. For dysarthric speech synthesis, a modified neural multi-talker TTS is implemented by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. To evaluate the effectiveness for synthesis of training data for ASR, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has significant impact on the dysarthric ASR systems. In addition, we have conducted a subjective evaluation to evaluate the dysarthric-ness and similarity of synthesized speech. Our subjective evaluation shows that the perceived dysartrhic-ness of synthesized speech is similar to that of true dysarthric speech, especially for higher levels of dysarthria

We propose a dynamic sensor selection approach for deep neural networks (DNNs), which is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset. This dynamic selection is jointly learned with the task model in an end-to-end way, using the Gumbel-Softmax trick to allow the discrete decisions to be learned through standard backpropagation. We then show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit. We further improve performance by including a dynamic spatial filter that makes the task-DNN more robust against the fact that it now needs to be able to handle a multitude of possible node subsets. Finally, we explain how the selection of the optimal channels can be distributed across the different nodes in a WSN. We validate this method on a use case in the context of body-sensor networks, where we use real electroencephalography (EEG) sensor data to emulate an EEG sensor network. We analyze the resulting trade-offs between transmission load and task accuracy.

We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.

Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under very weak assumptions, and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals. To elaborate, our methods take the form of confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time. CSs provide valid inference at arbitrary stopping times, incurring no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, and hence do not enjoy the aforementioned broad applicability of asymptotic confidence intervals. Our work bridges the gap by giving a definition for "asymptotic CSs", and deriving a universal asymptotic CS that requires only weak CLT-like assumptions. While the CLT approximates the distribution of a sample average by that of a Gaussian at a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen and improvements by Koml\'os, Major, and Tusn\'ady) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration of our theory, we derive asymptotic CSs for the average treatment effect using efficient estimators in observational studies (for which no nonasymptotic bounds can exist even in the fixed-time regime) as well as randomized experiments, enabling causal inference that can be continuously monitored and adaptively stopped.

We study the problem of enumerating Tarski fixed points, focusing on the relational lattices of equivalences, quasiorders and binary relations. We present a polynomial space enumeration algorithm for Tarski fixed points on these lattices and other lattices of polynomial height. It achieves polynomial delay when enumerating fixed points of increasing isotone maps on all three lattices, as well as decreasing isotone maps on the lattice of binary relations. In those cases in which the enumeration algorithm does not guarantee polynomial delay on the three relational lattices on the other hand, we prove exponential lower bounds for deciding the existence of three fixed points when the isotone map is given as an oracle, and that it is NP-hard to find three or more Tarski fixed points. More generally, we show that any deterministic or bounded-error randomized algorithm must perform a number of queries asymptotically at least as large as the lattice width to decide the existence of three fixed points when the isotone map is given as an oracle. Finally, we demonstrate that our findings yield a polynomial delay and space algorithm for listing bisimulations and instances of some related models of behavioral or role equivalence.

We develop the no-propagate algorithm for sampling the linear response of random dynamical systems, which are non-uniform hyperbolic deterministic systems perturbed by noise with smooth density. We first derive a Monte-Carlo type formula and then the algorithm, which is different from the ensemble (stochastic gradient) algorithms, finite-element algorithms, and fast-response algorithms; it does not involve the propagation of vectors or covectors, and only the density of the noise is differentiated, so the formula is not cursed by gradient explosion, dimensionality, or non-hyperbolicity. We demonstrate our algorithm on a tent map perturbed by noise and a chaotic neural network with 51 layers $\times$ 9 neurons. By itself, this algorithm approximates the linear response of non-hyperbolic deterministic systems, with an additional error proportional to the noise. We also discuss the potential of using this algorithm as a part of a bigger algorithm with smaller error.

We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear logic where the exponential modality ! is interpreted as a constructor for streams over finite data. Logical consistency is maintained at a global level by adapting a standard progressing criterion. We present an infinitary version of cut-elimination based on finite approximations, and we prove that, in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit. Furthermore, we show that cut-elimination preserves the progressive criterion and various regularity conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational semantics for our systems based on the relational model.

Making inference with spatial extremal dependence models can be computationally burdensome since they involve intractable and/or censored likelihoods. Building on recent advances in likelihood-free inference with neural Bayes estimators, that is, neural networks that approximate Bayes estimators, we develop highly efficient estimators for censored peaks-over-threshold models that encode censoring information in the neural network architecture. Our new method provides a paradigm shift that challenges traditional censored likelihood-based inference methods for spatial extremal dependence models. Our simulation studies highlight significant gains in both computational and statistical efficiency, relative to competing likelihood-based approaches, when applying our novel estimators to make inference with popular extremal dependence models, such as max-stable, $r$-Pareto, and random scale mixture process models. We also illustrate that it is possible to train a single neural Bayes estimator for a general censoring level, precluding the need to retrain the network when the censoring level is changed. We illustrate the efficacy of our estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial extremal dependence models to assess extreme particulate matter 2.5 microns or less in diameter (PM2.5) concentration over the whole of Saudi Arabia.

Medical studies for chronic disease are often interested in the relation between longitudinal risk factor profiles and individuals' later life disease outcomes. These profiles may typically be subject to intermediate structural changes due to treatment or environmental influences. Analysis of such studies may be handled by the joint model framework. However, current joint modeling does not consider structural changes in the residual variability of the risk profile nor consider the influence of subject-specific residual variability on the time-to-event outcome. In the present paper, we extend the joint model framework to address these two heterogeneous intra-individual variabilities. A Bayesian approach is used to estimate the unknown parameters and simulation studies are conducted to investigate the performance of the method. The proposed joint model is applied to the Framingham Heart Study to investigate the influence of anti-hypertensive medication on the systolic blood pressure variability together with its effect on the risk of developing cardiovascular disease. We show that anti-hypertensive medication is associated with elevated systolic blood pressure variability and increased variability elevates risk of developing cardiovascular disease.

Finding similar patients is a common objective in precision medicine, facilitating treatment outcome assessment and clinical decision support. Choosing widely-available patient features and appropriate mathematical methods for similarity calculations is crucial. International Statistical Classification of Diseases and Related Health Problems (ICD) codes are used worldwide to encode diseases and are available for nearly all patients. Aggregated as sets consisting of primary and secondary diagnoses they can display a degree of comorbidity and reveal comorbidity patterns. It is possible to compute the similarity of patients based on their ICD codes by using semantic similarity algorithms. These algorithms have been traditionally evaluated using a single-term expert rated data set. However, real-word patient data often display varying degrees of documented comorbidities that might impair algorithm performance. To account for this, we present a scale term that considers documented comorbidity-variance. In this work, we compared the performance of 80 combinations of established algorithms in terms of semantic similarity based on ICD-code sets. The sets have been extracted from patients with a C25.X (pancreatic cancer) primary diagnosis and provide a variety of different combinations of ICD-codes. Using our scale term we yielded the best results with a combination of level-based information content, Leacock & Chodorow concept similarity and bipartite graph matching for the set similarities reaching a correlation of 0.75 with our expert's ground truth. Our results highlight the importance of accounting for comorbidity variance while demonstrating how well current semantic similarity algorithms perform.

北京阿比特科技有限公司