Errors of machine learning models are costly, especially in safety-critical domains such as healthcare, where such mistakes can prevent the deployment of machine learning altogether. In these settings, conservative models -- models which can defer to human judgment when they are likely to make an error -- may offer a solution. However, detecting unusual or difficult examples is notably challenging, as it is impossible to anticipate all potential inputs at test time. To address this issue, prior work has proposed to minimize the model's confidence on an auxiliary pseudo-OOD dataset. We theoretically analyze the effect of confidence minimization and show that the choice of auxiliary dataset is critical. Specifically, if the auxiliary dataset includes samples from the OOD region of interest, confidence minimization provably separates ID and OOD inputs by predictive confidence. Taking inspiration from this result, we present data-driven confidence minimization (DCM), which minimizes confidence on an uncertainty dataset containing examples that the model is likely to misclassify at test time. Our experiments show that DCM consistently outperforms state-of-the-art OOD detection methods on 8 ID-OOD dataset pairs, reducing FPR (at TPR 95%) by 6.3% and 58.1% on CIFAR-10 and CIFAR-100, and outperforms existing selective classification approaches on 4 datasets in conditions of distribution shift.
We study the problem of uncertainty quantification for time series prediction, with the goal of providing easy-to-use algorithms with formal guarantees. The algorithms we present build upon ideas from conformal prediction and control theory, are able to prospectively model conformal scores in an online setting, and adapt to the presence of systematic errors due to seasonality, trends, and general distribution shifts. Our theory both simplifies and strengthens existing analyses in online conformal prediction. Experiments on 4-week-ahead forecasting of statewide COVID-19 death counts in the U.S. show an improvement in coverage over the ensemble forecaster used in official CDC communications. We also run experiments on predicting electricity demand, market returns, and temperature using autoregressive, Theta, Prophet, and Transformer models. We provide an extendable codebase for testing our methods and for the integration of new algorithms, data sets, and forecasting rules.
A key challenge in off-road navigation is that even visually similar terrains or ones from the same semantic class may have substantially different traction properties. Existing work typically assumes no wheel slip or uses the expected traction for motion planning, where the predicted trajectories provide a poor indication of the actual performance if the terrain traction has high uncertainty. In contrast, this work proposes to analyze terrain traversability with the empirical distribution of traction parameters in unicycle dynamics, which can be learned by a neural network in a self-supervised fashion. The probabilistic traction model leads to two risk-aware cost formulations that account for the worst-case expected cost and traction. To help the learned model generalize to unseen environment, terrains with features that lead to unreliable predictions are detected via a density estimator fit to the trained network's latent space and avoided via auxiliary penalties during planning. Simulation results demonstrate that the proposed approach outperforms existing work that assumes no slip or uses the expected traction in both navigation success rate and completion time. Furthermore, avoiding terrains with low density-based confidence score achieves up to 30% improvement in success rate when the learned traction model is used in a novel environment.
In this paper, we introduce a conformal prediction method to construct prediction sets in a oneshot federated learning setting. More specifically, we define a quantile-of-quantiles estimator and prove that for any distribution, it is possible to output prediction sets with desired coverage in only one round of communication. To mitigate privacy issues, we also describe a locally differentially private version of our estimator. Finally, over a wide range of experiments, we show that our method returns prediction sets with coverage and length very similar to those obtained in a centralized setting. Overall, these results demonstrate that our method is particularly well-suited to perform conformal predictions in a one-shot federated learning setting.
This paper presents a CLIP-based unsupervised learning method for annotation-free multi-label image classification, including three stages: initialization, training, and inference. At the initialization stage, we take full advantage of the powerful CLIP model and propose a novel approach to extend CLIP for multi-label predictions based on global-local image-text similarity aggregation. To be more specific, we split each image into snippets and leverage CLIP to generate the similarity vector for the whole image (global) as well as each snippet (local). Then a similarity aggregator is introduced to leverage the global and local similarity vectors. Using the aggregated similarity scores as the initial pseudo labels at the training stage, we propose an optimization framework to train the parameters of the classification network and refine pseudo labels for unobserved labels. During inference, only the classification network is used to predict the labels of the input image. Extensive experiments show that our method outperforms state-of-the-art unsupervised methods on MS-COCO, PASCAL VOC 2007, PASCAL VOC 2012, and NUS datasets and even achieves comparable results to weakly supervised classification methods.
In complex settings, such as healthcare, predictive risk scores play an increasingly crucial role in guiding interventions. However, directly updating risk scores used to guide intervention can lead to biased risk estimates. To address this, we propose updating using a `holdout set' - a subset of the population that does not receive interventions guided by the risk score. Striking a balance in the size of the holdout set is essential, to ensure good performance of the updated risk score whilst minimising the number of held out samples. We prove that this approach enables total costs to grow at a rate $O\left(N^{2/3}\right)$ for a population of size $N$, and argue that in general circumstances there is no competitive alternative. By defining an appropriate loss function, we describe conditions under which an optimal holdout size (OHS) can be readily identified, and introduce parametric and semi-parametric algorithms for OHS estimation, demonstrating their use on a recent risk score for pre-eclampsia. Based on these results, we make the case that a holdout set is a safe, viable and easily implemented means to safely update predictive risk scores.
Supervised classification algorithms are used to solve a growing number of real-life problems around the globe. Their performance is strictly connected with the quality of labels used in training. Unfortunately, acquiring good-quality annotations for many tasks is infeasible or too expensive to be done in practice. To tackle this challenge, active learning algorithms are commonly employed to select only the most relevant data for labeling. However, this is possible only when the quality and quantity of labels acquired from experts are sufficient. Unfortunately, in many applications, a trade-off between annotating individual samples by multiple annotators to increase label quality vs. annotating new samples to increase the total number of labeled instances is necessary. In this paper, we address the issue of faulty data annotations in the context of active learning. In particular, we propose two novel annotation unification algorithms that utilize unlabeled parts of the sample space. The proposed methods require little to no intersection between samples annotated by different experts. Our experiments on four public datasets indicate the robustness and superiority of the proposed methods in both, the estimation of the annotator's reliability, and the assignment of actual labels, against the state-of-the-art algorithms and the simple majority voting.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.