亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Purpose: Conventional robotic ultrasound systems were utilized with patients in supine positions. Meanwhile, the limitation of the systems is that it is difficult to evacuate the patients in case of emergency (e.g., patient discomfort and system failure) because the patients are restricted between the robot system and bed. Then, it is ideal that the patient undergoes the examination in the sitting position in terms of safety. Therefore, we validated a feasibility study of seated-style echocardiography using a robot. Method: Preliminary experiments were conducted to verify the following two points: (1) the possibility of obtaining cardiac disease features in the sitting posture as well as in the conventional examination, and (2) the relationship between posture angle and physical burden. For reducing the physical burden, two unique mechanisms were incorporated into the system: (1) a leg pendulum base mechanism to reduce the load on the legs when the lateral bending angle increases, and (2) a roll angle division by a lumbar lateral bending and thoracic rotation mechanisms. Results: Preliminary results demonstrated that adjusting the diagnostic posture angle enabled us to obtain the views, including cardiac disease features, as in the conventional examination. The results showed that the body burden increased as the posture's lateral bending angle increased. The results also demonstrated that the body load reduction mechanism incorporated in the results could reduce the physical load in the seated echocardiography. Conclusion: These results showed the potential of the seated-style echocardiography robot.

相關內容

Identifiers, such as method and variable names, form a large portion of source code. Therefore, low-quality identifiers can substantially hinder code comprehension. To support developers in using meaningful identifiers, several (semi-)automatic techniques have been proposed, mostly being data-driven (e.g. statistical language models, deep learning models) or relying on static code analysis. Still, limited empirical investigations have been performed on the effectiveness of such techniques for recommending developers with meaningful identifiers, possibly resulting in rename refactoring operations. We present a large-scale study investigating the potential of data-driven approaches to support automated variable renaming. We experiment with three state-of-the-art techniques: a statistical language model and two DL-based models. The three approaches have been trained and tested on three datasets we built with the goal of evaluating their ability to recommend meaningful variable identifiers. Our quantitative and qualitative analyses show the potential of such techniques that, under specific conditions, can provide valuable recommendations and are ready to be integrated in rename refactoring tools. Nonetheless, our results also highlight limitations of the experimented approaches that call for further research in this field.

Client-server sessions are based on a variation of the traditional interpretation of linear logic propositions as session types in which non-linear channels (those regulating the interaction between a pool of clients and a single server) are typed by coexponentials instead of the usual exponentials. Coexponentials enable the modeling of racing interactions, whereby clients compete to interact with a single server whose internal state (and thus the offered service) may change as the server processes requests sequentially. In this work we present a fair termination result for CSLL$^\infty$, a core calculus of client-server sessions. We design a type system such that every well-typed term corresponds to a valid derivation in $\mu$MALL$^\infty$, the infinitary proof theory of linear logic with least and greatest fixed points. We then establish a correspondence between reductions in the calculus and principal reductions in $\mu$MALL$^\infty$. Fair termination in CSLL$^\infty$ follows from cut elimination in $\mu$MALL$^\infty$.

Sound source localization is crucial in acoustic sensing and monitoring-related applications. In this paper, we do a comprehensive analysis of improvement in sound source localization by combining the direction of arrivals (DOAs) with their derivatives which quantify the changes in the positions of sources over time. This study uses the SALSA-Lite feature with a convolutional recurrent neural network (CRNN) model for predicting DOAs and their first-order derivatives. An update rule is introduced to combine the predicted DOAs with the estimated derivatives to obtain the final DOAs. The experimental validation is done using TAU-NIGENS Spatial Sound Events (TNSSE) 2021 dataset. We compare the performance of the networks predicting DOAs with derivative vs. the one predicting only the DOAs at low SNR levels. The results show that combining the derivatives with the DOAs improves the localization accuracy of moving sources.

Blockchains offer strong security guarantees, but they cannot protect the ordering of transactions. Powerful players, such as miners, sequencers, and sophisticated bots, can reap significant profits by selectively including, excluding, or re-ordering user transactions. Such profits are called Miner/Maximal Extractable Value or MEV. MEV bears profound implications for blockchain security and decentralization. While numerous countermeasures have been proposed, there is no agreement on the best solution. Moreover, solutions developed in academic literature differ quite drastically from what is widely adopted by practitioners. For these reasons, this paper systematizes the knowledge of the theory and practice of MEV countermeasures. The contribution is twofold. First, we present a comprehensive taxonomy of 28 proposed MEV countermeasures, covering four different technical directions. Secondly, we empirically studied the most popular MEV- auction-based solution with rich blockchain and mempool data. In addition to gaining insights into MEV auction platforms' real-world operations, our study shed light on the prevalent censorship by MEV auction platforms as a result of the recent OFAC sanction, and its implication on blockchain properties.

Understanding the ambient scene is imperative for several applications such as autonomous driving and navigation. While obtaining real-world image data with per-pixel labels is challenging, existing accurate synthetic image datasets primarily focus on indoor spaces with fixed lighting and scene participants, thereby severely limiting their application to outdoor scenarios. In this work we introduce OmniHorizon, a synthetic dataset with 24,335 omnidirectional views comprising of a broad range of indoor and outdoor spaces consisting of buildings, streets, and diverse vegetation. Our dataset also accounts for dynamic scene components including lighting, different times of a day settings, pedestrians, and vehicles. Furthermore, we also demonstrate a learned synthetic-to-real cross-domain inference method for in-the-wild 3D scene depth and normal estimation method using our dataset. To this end, we propose UBotNet, an architecture based on a UNet and a Bottleneck Transformer, to estimate scene-consistent normals. We show that UBotNet achieves significantly improved depth accuracy (4.6%) and normal estimation (5.75%) compared to several existing networks such as U-Net with skip-connections. Finally, we demonstrate in-the-wild depth and normal estimation on real-world images with UBotNet trained purely on our OmniHorizon dataset, showing the promise of proposed dataset and network for scene understanding.

We apply the Hierarchical Autoregressive Neural (HAN) network sampling algorithm to the two-dimensional $Q$-state Potts model and perform simulations around the phase transition at $Q=12$. We quantify the performance of the approach in the vicinity of the first-order phase transition and compare it with that of the Wolff cluster algorithm. We find a significant improvement as far as the statistical uncertainty is concerned at a similar numerical effort. In order to efficiently train large neural networks we introduce the technique of pre-training. It allows to train some neural networks using smaller system sizes and then employing them as starting configurations for larger system sizes. This is possible due to the recursive construction of our hierarchical approach. Our results serve as a demonstration of the performance of the hierarchical approach for systems exhibiting bimodal distributions. Additionally, we provide estimates of the free energy and entropy in the vicinity of the phase transition with statistical uncertainties of the order of $10^{-7}$ for the former and $10^{-3}$ for the latter based on a statistics of $10^6$ configurations.

In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.

The social acceptance of AI agents, including intelligent virtual agents and physical robots, is becoming more important for the integration of AI into human society. Although the agents used in human society share various tasks with humans, their cooperation may frequently reduce the task performance. One way to improve the relationship between humans and AI agents is to have humans empathize with the agents. By empathizing, humans feel positively and kindly toward agents, which makes it easier to accept them. In this study, we focus on tasks in which humans and agents have various interactions together, and we investigate the properties of agents that significantly influence human empathy toward the agents. To investigate the effects of task content, difficulty, task completion, and an agent's expression on human empathy, two experiments were conducted. The results of the two experiments showed that human empathy toward the agent was difficult to maintain with only task factors, and that the agent's expression was able to maintain human empathy. In addition, a higher task difficulty reduced the decrease in human empathy, regardless of task content. These results demonstrate that an AI agent's properties play an important role in helping humans accept them.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

北京阿比特科技有限公司