亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce and study a family of rate-compatible Low-Density Parity-Check (LDPC) codes characterized by very simple encoders. The design of these codes starts from simplex codes, which are defined by parity-check matrices having a straightforward form stemming from the coefficients of a primitive polynomial. For this reason, we call the new codes Primitive Rate-Compatible LDPC (PRC-LDPC) codes. By applying puncturing to these codes, we obtain a bit-level granularity of their code rates. We show that, in order to achieve good LDPC codes, the underlying polynomials, besides being primitive, must meet some more stringent conditions with respect to those of classical punctured simplex codes. We leverage non-modular Golomb rulers to take the new requirements into account. We characterize the minimum distance properties of PRC-LDPC codes, and study and discuss their encoding and decoding complexity. Finally, we assess their error rate performance under iterative decoding.

相關內容

We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.

This paper addresses the problem of selecting of a set of texts for annotation in text classification using retrieval methods when there are limits on the number of annotations due to constraints on human resources. An additional challenge addressed is dealing with binary categories that have a small number of positive instances, reflecting severe class imbalance. In our situation, where annotation occurs over a long time period, the selection of texts to be annotated can be made in batches, with previous annotations guiding the choice of the next set. To address these challenges, the paper proposes leveraging SHAP to construct a quality set of queries for Elasticsearch and semantic search, to try to identify optimal sets of texts for annotation that will help with class imbalance. The approach is tested on sets of cue texts describing possible future events, constructed by participants involved in studies aimed to help with the management of obesity and diabetes. We introduce an effective method for selecting a small set of texts for annotation and building high-quality classifiers. We integrate vector search, semantic search, and machine learning classifiers to yield a good solution. Our experiments demonstrate improved F1 scores for the minority classes in binary classification.

Internet of Things (IoT) involves sensors for monitoring and wireless networks for efficient communication. However, resource-constrained IoT devices and limitations in existing wireless technologies hinder its full potential. Integrating Unmanned Aerial Vehicles (UAVs) into IoT networks can address some challenges by expanding its' coverage, providing security, and bringing computing closer to IoT devices. Nevertheless, effective data collection in UAV-assisted IoT networks is hampered by factors, including dynamic UAV behavior, environmental variables, connectivity instability, and security considerations. In this survey, we first explore UAV-based IoT networks, focusing on communication and networking aspects. Next, we cover various UAV-based data collection methods their advantages and disadvantages, followed by a discussion on performance metrics for data collection. As this article primarily emphasizes reliable and efficient data collection in UAV-assisted IoT networks, we briefly discuss existing research on data accuracy and consistency, network connectivity, and data security and privacy to provide insights into reliable data collection. Additionally, we discuss efficient data collection strategies in UAV-based IoT networks, covering trajectory and path planning, collision avoidance, sensor network clustering, data aggregation, UAV swarm formations, and artificial intelligence for optimization. We also present two use cases of UAVs as a service for enhancing data collection reliability and efficiency. Finally, we discuss future challenges in data collection for UAV-assisted IoT networks.

Brain-Computer Interfaces (BCIs) are used in various application scenarios allowing direct communication between the brain and computers. Specifically, electroencephalography (EEG) is one of the most common techniques for obtaining evoked potentials resulting from external stimuli, as the P300 potential is elicited from known images. The combination of Machine Learning (ML) and P300 potentials is promising for authenticating subjects since the brain waves generated by each person when facing a particular stimulus are unique. However, existing authentication solutions do not extensively explore P300 potentials and fail when analyzing the most suitable processing and ML-based classification techniques. Thus, this work proposes i) a framework for authenticating BCI users using the P300 potential; ii) the validation of the framework on ten subjects creating an experimental scenario employing a non-invasive EEG-based BCI; and iii) the evaluation of the framework performance defining two experiments (binary and multiclass ML classification) and three testing configurations incrementally analyzing the performance of different processing techniques and the differences between classifying with epochs or statistical values. This framework achieved a performance close to 100\% f1-score in both experiments for the best classifier, highlighting its effectiveness in accurately authenticating users and demonstrating the feasibility of performing EEG-based authentication using P300 potentials.

Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision. Yet, their ability to provide well-grounded rationalizations for knowledge-intensive tasks remains under-explored. Such tasks, like commonsense multiple-choice questions, require rationales based on world knowledge to support predictions and refute alternate options. We consider the task of generating knowledge-guided rationalization in natural language by using expert-written examples in a few-shot manner. Surprisingly, crowd-workers preferred knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations. Although LLMs-generated rationales were preferable, further improvements in conciseness and novelty are required. In another study, we show how rationalization of incorrect model predictions erodes humans' trust in LLM-generated rationales. Motivated by these observations, we create a two-stage pipeline to review task predictions and eliminate potential incorrect decisions before rationalization, enabling trustworthy rationale generation.

Advanced omics technologies and facilities generate a wealth of valuable data daily; however, the data often lacks the essential metadata required for researchers to find and search them effectively. The lack of metadata poses a significant challenge in the utilization of these datasets. Machine learning-based metadata extraction techniques have emerged as a potentially viable approach to automatically annotating scientific datasets with the metadata necessary for enabling effective search. Text labeling, usually performed manually, plays a crucial role in validating machine-extracted metadata. However, manual labeling is time-consuming; thus, there is an need to develop automated text labeling techniques in order to accelerate the process of scientific innovation. This need is particularly urgent in fields such as environmental genomics and microbiome science, which have historically received less attention in terms of metadata curation and creation of gold-standard text mining datasets. In this paper, we present two novel automated text labeling approaches for the validation of ML-generated metadata for unlabeled texts, with specific applications in environmental genomics. Our techniques show the potential of two new ways to leverage existing information about the unlabeled texts and the scientific domain. The first technique exploits relationships between different types of data sources related to the same research study, such as publications and proposals. The second technique takes advantage of domain-specific controlled vocabularies or ontologies. In this paper, we detail applying these approaches for ML-generated metadata validation. Our results show that the proposed label assignment approaches can generate both generic and highly-specific text labels for the unlabeled texts, with up to 44% of the labels matching with those suggested by a ML keyword extraction algorithm.

Despite Multi-modal Large Language Models (MM-LLMs) have made exciting strides recently, they are still struggling to efficiently model the interactions among multi-modal inputs and the generation in non-textual modalities. In this work, we propose TEAL (Tokenize and Embed ALl)}, an approach to treat the input from any modality as a token sequence and learn a joint embedding space for all modalities. Specifically, for the input from any modality, TEAL first discretizes it into a token sequence with the off-the-shelf tokenizer and embeds the token sequence into a joint embedding space with a learnable embedding matrix. MM-LLMs just need to predict the multi-modal tokens autoregressively as the textual LLMs do. Finally, the corresponding de-tokenizer is applied to generate the output in each modality based on the predicted token sequence. With the joint embedding space, TEAL enables the frozen LLMs to perform both understanding and generation tasks involving non-textual modalities, such as image and audio. Thus, the textual LLM can just work as an interface and maintain its high performance in textual understanding and generation. Experiments show that TEAL achieves substantial improvements in multi-modal understanding, and implements a simple scheme for multi-modal generations.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司