We introduce and analyze a partially augmented fully-mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier-Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum, and the Beavers-Joseph-Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier-Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with non-matching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter.
Harmonic potentials provide globally convergent potential fields that are provably free of local minima. Due to its analytical format, it is particularly suitable for generating safe and reliable robot navigation policies. However, for complex environments that consist of a large number of overlapping non-sphere obstacles, the computation of associated transformation functions can be tedious. This becomes more apparent when: (i) the workspace is initially unknown and the underlying potential fields are updated constantly as the robot explores it; (ii) the high-level mission consists of sequential navigation tasks among numerous regions, requiring the robot to switch between different potentials. Thus, this work proposes an efficient and automated scheme to construct harmonic potentials incrementally online as guided by the task automaton. A novel two-layer harmonic tree (HT) structure is introduced that facilitates the hybrid combination of oriented search algorithms for task planning and harmonic-based navigation controllers for non-holonomic robots. Both layers are adapted efficiently and jointly during online execution to reflect the actual feasibility and cost of navigation within the updated workspace. Global safety and convergence are ensured both for the high-level task plan and the low-level robot trajectory. Known issues such as oscillation or long-detours for purely potential-based methods and sharp-turns or high computation complexity for purely search-based methods are prevented. Extensive numerical simulation and hardware experiments are conducted against several strong baselines.
Label error is a ubiquitous problem in annotated data. Large amounts of label error substantially degrades the quality of deep learning models. Existing methods to tackle the label error problem largely focus on the classification task, and either rely on task specific architecture or require non-trivial additional computations, which is undesirable or even unattainable for industry usage. In this paper, we propose LEDO: a model-agnostic and computationally efficient framework for Label Error Detection and Overwrite. LEDO is based on Monte Carlo Dropout combined with uncertainty metrics, and can be easily generalized to multiple tasks and data sets. Applying LEDO to an industry opinion-based question answering system demonstrates it is effective at improving accuracy in all the core models. Specifically, LEDO brings 1.1% MRR gain for the retrieval model, 1.5% PR AUC improvement for the machine reading comprehension model, and 0.9% rise in the Average Precision for the ranker, on top of the strong baselines with a large-scale social media dataset. Importantly, LEDO is computationally efficient compared to methods that require loss function change, and cost-effective as the resulting data can be used in the same continuous training pipeline for production. Further analysis shows that these gains come from an improved decision boundary after cleaning the label errors existed in the training data.
Hybrid dynamical systems, i.e. systems that have both continuous and discrete states, are ubiquitous in engineering, but are difficult to work with due to their discontinuous transitions. For example, a robot leg is able to exert very little control effort while it is in the air compared to when it is on the ground. When the leg hits the ground, the penetrating velocity instantaneously collapses to zero. These instantaneous changes in dynamics and discontinuities (or jumps) in state make standard smooth tools for planning, estimation, control, and learning difficult for hybrid systems. One of the key tools for accounting for these jumps is called the saltation matrix. The saltation matrix is the sensitivity update when a hybrid jump occurs and has been used in a variety of fields including robotics, power circuits, and computational neuroscience. This paper presents an intuitive derivation of the saltation matrix and discusses what it captures, where it has been used in the past, how it is used for linear and quadratic forms, how it is computed for rigid body systems with unilateral constraints, and some of the structural properties of the saltation matrix in these cases.
The training of high-dimensional regression models on comparably sparse data is an important yet complicated topic, especially when there are many more model parameters than observations in the data. From a Bayesian perspective, inference in such cases can be achieved with the help of shrinkage prior distributions, at least for generalized linear models. However, real-world data usually possess multilevel structures, such as repeated measurements or natural groupings of individuals, which existing shrinkage priors are not built to deal with. We generalize and extend one of these priors, the R2D2 prior by Zhang et al. (2020), to linear multilevel models leading to what we call the R2D2M2 prior. The proposed prior enables both local and global shrinkage of the model parameters. It comes with interpretable hyperparameters, which we show to be intrinsically related to vital properties of the prior, such as rates of concentration around the origin, tail behavior, and amount of shrinkage the prior exerts. We offer guidelines on how to select the prior's hyperparameters by deriving shrinkage factors and measuring the effective number of non-zero model coefficients. Hence, the user can readily evaluate and interpret the amount of shrinkage implied by a specific choice of hyperparameters. Finally, we perform extensive experiments on simulated and real data, showing that our inference procedure for the prior is well calibrated, has desirable global and local regularization properties and enables the reliable and interpretable estimation of much more complex Bayesian multilevel models than was previously possible.
In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Amp\`ere equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes.
Code-recommendation systems, such as Copilot and CodeWhisperer, have the potential to improve programmer productivity by suggesting and auto-completing code. However, to fully realize their potential, we must understand how programmers interact with these systems and identify ways to improve that interaction. To make progress, we studied GitHub Copilot, a code-recommendation system used by millions of programmers daily. We developed CUPS, a taxonomy of common programmer activities when interacting with Copilot. Our study of 21 programmers, who completed coding tasks and retrospectively labeled their sessions with CUPS, showed that CUPS can help us understand how programmers interact with code-recommendation systems, revealing inefficiencies and time costs. Our insights reveal how programmers interact with Copilot and motivate new interface designs and metrics.
This study analyzes the possible relationship between personality traits, in terms of Big Five (extraversion, agreeableness, responsibility, emotional stability and openness to experience), and social interactions mediated by digital platforms in different socioeconomic and cultural contexts. We considered data from a questionnaire and the experience of using a chatbot, as a mean of requesting and offering help, with students from 4 universities: University of Trento (Italy), the National University of Mongolia, the School of Economics of London (United Kingdom) and the Universidad Cat\'olica Nuestra Se\~nora de la Asunci\'on (Paraguay). The main findings confirm that personality traits may influence social interactions and active participation in groups. Therefore, they should be taken into account to enrich the recommendation of matching algorithms between people who ask for help and people who could respond not only on the basis of their knowledge and skills.
Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.